Critique Before Thinking: Mitigating Hallucination through Rationale-Augmented Instruction Tuning
- URL: http://arxiv.org/abs/2505.07172v1
- Date: Mon, 12 May 2025 01:51:50 GMT
- Title: Critique Before Thinking: Mitigating Hallucination through Rationale-Augmented Instruction Tuning
- Authors: Zexian Yang, Dian Li, Dayan Wu, Gang Liu, Weiping Wang,
- Abstract summary: Re-Critic is a visual rationale synthesizer that augments raw instructions with rationale explanation.<n>Re-Critic employs an in-context self-critic mechanism to select response pairs for preference tuning.<n> Experiments demonstrate that models fine-tuned with our rationale-augmented dataset yield gains that extend beyond hallucination-specific tasks to broader multimodal reasoning tasks.
- Score: 16.86024541396427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant advancements in multimodal reasoning tasks, existing Large Vision-Language Models (LVLMs) are prone to producing visually ungrounded responses when interpreting associated images. In contrast, when humans embark on learning new knowledge, they often rely on a set of fundamental pre-study principles: reviewing outlines to grasp core concepts, summarizing key points to guide their focus and enhance understanding. However, such preparatory actions are notably absent in the current instruction tuning processes. This paper presents Re-Critic, an easily scalable rationale-augmented framework designed to incorporate fundamental rules and chain-of-thought (CoT) as a bridge to enhance reasoning abilities. Specifically, Re-Critic develops a visual rationale synthesizer that scalably augments raw instructions with rationale explanation. To probe more contextually grounded responses, Re-Critic employs an in-context self-critic mechanism to select response pairs for preference tuning. Experiments demonstrate that models fine-tuned with our rationale-augmented dataset yield gains that extend beyond hallucination-specific tasks to broader multimodal reasoning tasks.
Related papers
- Perceptual Decoupling for Scalable Multi-modal Reasoning via Reward-Optimized Captioning [78.17782197231325]
We propose a reasoning-guided reinforcement learning strategy that aligns the extractor's captioning behavior with the reasoning objective.<n> Experiments on multi-modal math and science benchmarks show that the proposed RACRO method achieves state-of-the-art average performance.
arXiv Detail & Related papers (2025-06-05T02:28:07Z) - A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs [3.2228025627337864]
This paper introduces a structured evaluation framework to dissect the perception-reasoning interface in Vision-Language Models (VLMs)<n>We propose three distinct evaluation paradigms, mirroring human problem-solving strategies.<n>Applying this framework, we demonstrate that CA, leveraging powerful language models for reasoning over rich, independently generated descriptions, achieves new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2025-01-23T12:42:42Z) - STEP: Enhancing Video-LLMs' Compositional Reasoning by Spatio-Temporal Graph-guided Self-Training [87.58996020705258]
Video Large Language Models (Video-LLMs) have recently shown strong derivation in basic video understanding tasks.<n>Video-LLMs struggle with compositional reasoning that requires multi-step explicit-temporal inference across object relations, interactions and events.<n>We propose STEP, a novel graph-guided self-training method that enables VideoLLMs to generate reasoning-rich finetuning data from any raw videos to improve itself.
arXiv Detail & Related papers (2024-11-29T11:54:55Z) - Reflective Instruction Tuning: Mitigating Hallucinations in Large Vision-Language Models [36.119299938503936]
Large vision-language models (LVLMs) have shown promising performance on a variety of vision-language tasks.
They remain susceptible to hallucinations, generating outputs misaligned with visual content or instructions.
We propose reflective instruction tuning, which integrates rationale learning into visual instruction tuning.
arXiv Detail & Related papers (2024-07-16T06:32:45Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Distilling Reasoning Ability from Large Language Models with Adaptive Thinking [54.047761094420174]
Chain of thought finetuning (cot-finetuning) aims to endow small language models (SLM) with reasoning ability to improve their performance towards specific tasks.
Most existing cot-finetuning methods adopt a pre-thinking mechanism, allowing the SLM to generate a rationale before providing an answer.
This mechanism enables SLM to analyze and think about complex questions, but it also makes answer correctness highly sensitive to minor errors in rationale.
We propose a robust post-thinking mechanism to generate answers before rationale.
arXiv Detail & Related papers (2024-04-14T07:19:27Z) - Visual Chain of Thought: Bridging Logical Gaps with Multimodal
Infillings [61.04460792203266]
We introduce VCoT, a novel method that leverages chain-of-thought prompting with vision-language grounding to bridge the logical gaps within sequential data.
Our method uses visual guidance to generate synthetic multimodal infillings that add consistent and novel information to reduce the logical gaps for downstream tasks.
arXiv Detail & Related papers (2023-05-03T17:58:29Z) - Rationale-Augmented Ensembles in Language Models [53.45015291520658]
We reconsider rationale-augmented prompting for few-shot in-context learning.
We identify rationale sampling in the output space as the key component to robustly improve performance.
We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches.
arXiv Detail & Related papers (2022-07-02T06:20:57Z) - Rediscovering Argumentation Principles Utilizing Collective Attacks [26.186171927678874]
We extend the principle-based approach to Argumentation Frameworks with Collective Attacks (SETAFs)
Our analysis shows that investigating principles based on decomposing the given SETAF (e.g. directionality or SCC-recursiveness) poses additional challenges in comparison to usual AFs.
arXiv Detail & Related papers (2022-05-06T11:41:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.