A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs
- URL: http://arxiv.org/abs/2501.13620v5
- Date: Tue, 06 May 2025 13:59:11 GMT
- Title: A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs
- Authors: Mohit Vaishnav, Tanel Tammet,
- Abstract summary: This paper introduces a structured evaluation framework to dissect the perception-reasoning interface in Vision-Language Models (VLMs)<n>We propose three distinct evaluation paradigms, mirroring human problem-solving strategies.<n>Applying this framework, we demonstrate that CA, leveraging powerful language models for reasoning over rich, independently generated descriptions, achieves new state-of-the-art (SOTA) performance.
- Score: 3.2228025627337864
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A fundamental challenge in artificial intelligence involves understanding the cognitive mechanisms underlying visual reasoning in sophisticated models like Vision-Language Models (VLMs). How do these models integrate visual perception with abstract thought, especially when reasoning across multiple images or requiring fine-grained compositional understanding? Drawing inspiration from cognitive science, this paper introduces a structured evaluation framework using diverse visual reasoning tasks-Bongard Problems (BPs) and Winoground-to dissect the perception-reasoning interface in VLMs. We propose three distinct evaluation paradigms, mirroring human problem-solving strategies: Direct Visual Rule Learning (DVRL; holistic processing), Deductive Rule Learning (DRL; rule extraction and application), and Componential Analysis (CA; analytical decomposition via task-agnostic textual descriptions). These paradigms systematically vary cognitive load and probe processing stages. Notably, CA enables multi-image reasoning evaluation even for single-image architectures and isolates reasoning from perception by operating on textual descriptions. Applying this framework, we demonstrate that CA, leveraging powerful language models for reasoning over rich, independently generated descriptions, achieves new state-of-the-art (SOTA) performance on challenging benchmarks including Bongard-OpenWorld, Bongard-HOI, and Winoground. Ablation studies confirm reasoning improves significantly when perceptual challenges are mitigated, revealing a critical perception bottleneck. Our framework provides a valuable diagnostic tool and suggests that decoupling perception (via rich, task-agnostic description) from reasoning is a promising direction for robust and general visual intelligence.
Related papers
- Video Event Reasoning and Prediction by Fusing World Knowledge from LLMs with Vision Foundation Models [10.1080193179562]
Current understanding models excel at recognizing "what" but fall short in high-level cognitive tasks like causal reasoning and future prediction.<n>We propose a novel framework that fuses a powerful Vision Foundation Model for deep visual perception with a Large Language Model (LLM) serving as a knowledge-driven reasoning core.
arXiv Detail & Related papers (2025-07-08T09:43:17Z) - Thinking with Generated Images [30.28526622443551]
We present Thinking with Generated Images, a novel paradigm that transforms how large multimodal models (LMMs) engage with visual reasoning.<n>Our approach enables AI models to engage in the kind of visual imagination and iterative refinement that characterizes human creative, analytical, and strategic thinking.
arXiv Detail & Related papers (2025-05-28T16:12:45Z) - Visual Abstract Thinking Empowers Multimodal Reasoning [11.70318717106245]
Images usually convey richer detail than text, but often include redundant information which downgrades multimodal reasoning performance.<n>Inspired by this cognitive strategy, we introduce Visual Abstract Thinking (VAT)<n>VAT prompts Multimodal Large Language Models (MLLMs) with visual abstract instead of explicit verbal thoughts or elaborate guidance.<n> Experimental results show that VAT consistently empowers different models, and achieves an average gain of 17% over GPT-4o baseline.
arXiv Detail & Related papers (2025-05-26T16:06:35Z) - VisionReasoner: Unified Visual Perception and Reasoning via Reinforcement Learning [55.34552054232695]
We introduce VisionReasoner, a unified framework capable of reasoning and solving multiple visual perception tasks.<n>We evaluate VisionReasoner on ten diverse tasks spanning three critical domains: detection, segmentation, and counting.
arXiv Detail & Related papers (2025-05-17T16:51:47Z) - Multimodal LLM Augmented Reasoning for Interpretable Visual Perception Analysis [19.032828729570458]
We use established principles and explanations from psychology and cognitive science related to complexity in human visual perception.
Our study aims to benchmark MLLMs across various explainability principles relevant to visual perception.
arXiv Detail & Related papers (2025-04-16T22:14:27Z) - Visual Language Models show widespread visual deficits on neuropsychological tests [0.0]
We use the toolkit of neuropsychology to assess the capabilities of three state-of-the-art Visual Language Models (VLMs)
We find widespread deficits in low- and mid-level visual abilities that would be considered clinically significant in humans.
These selective deficits, profiled through validated test batteries, suggest that an artificial system can achieve complex object recognition without developing foundational visual concepts that in humans require no explicit training.
arXiv Detail & Related papers (2025-04-15T01:04:56Z) - Mitigating Low-Level Visual Hallucinations Requires Self-Awareness: Database, Model and Training Strategy [53.07517728420411]
We introduce the first instruction database specifically focused on hallucinations in low-level vision tasks.
We propose the Self-Awareness Failure Elimination (SAFEQA) model to improve the perception and comprehension abilities of the model in low-level vision tasks.
We conduct comprehensive experiments on low-level vision tasks, with the results demonstrating that our proposed method significantly enhances self-awareness of the model in these tasks and reduces hallucinations.
arXiv Detail & Related papers (2025-03-26T16:05:01Z) - DeepPerception: Advancing R1-like Cognitive Visual Perception in MLLMs for Knowledge-Intensive Visual Grounding [61.26026947423187]
Human experts excel at fine-grained visual discrimination by leveraging domain knowledge to refine perceptual features.
Current Multimodal Large Language Models (MLLMs) struggle to integrate reasoning into visual perception.
We propose DeepPerception, an MLLM enhanced with cognitive visual perception capabilities.
arXiv Detail & Related papers (2025-03-17T04:06:34Z) - DRIVINGVQA: Analyzing Visual Chain-of-Thought Reasoning of Vision Language Models in Real-World Scenarios with Driving Theory Tests [69.00444996464662]
We present DrivingVQA, a new benchmark derived from driving theory tests to evaluate visual chain-of-thought reasoning in complex real-world scenarios.<n>Our experiments reveal that open-source and proprietary LVLMs struggle with visual chain-of-thought reasoning under zero-shot settings.<n>We investigate training strategies that leverage relevant entities to improve visual reasoning.
arXiv Detail & Related papers (2025-01-08T18:31:16Z) - Intriguing Properties of Large Language and Vision Models [18.449076451976236]
Large language and vision models (LLVMs) have received significant attention and development efforts due to their remarkable generalization performance.
Despite their achievements in advanced reasoning tasks, their performance on fundamental perception-related tasks remains surprisingly low.
We investigate this question by evaluating the most common LLVM's families (i.e., LLaVA) across 10 evaluation benchmarks.
arXiv Detail & Related papers (2024-10-07T05:07:01Z) - In-Context Learning Improves Compositional Understanding of Vision-Language Models [2.762909189433944]
compositional image understanding remains a rather difficult task due to the object bias present in training data.
We compare contrastive models with generative ones and analyze their differences in architecture, pre-training data, and training tasks and losses.
Our proposed approach outperforms baseline models across multiple compositional understanding datasets.
arXiv Detail & Related papers (2024-07-22T09:03:29Z) - Dual Thinking and Logical Processing -- Are Multi-modal Large Language Models Closing the Gap with Human Vision ? [5.076961098583674]
We introduce a novel adversarial dataset to provide evidence for the dual thinking framework in human vision.
Our psychophysical studies show the presence of multiple inferences in rapid succession.
Analysis of errors shows that the early stopping of visual processing can result in missing relevant information.
arXiv Detail & Related papers (2024-06-11T05:50:34Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
arXiv Detail & Related papers (2024-01-09T16:16:16Z) - MR-GSM8K: A Meta-Reasoning Benchmark for Large Language Model Evaluation [60.65820977963331]
We introduce a novel evaluation paradigm for Large Language Models (LLMs)
This paradigm shifts the emphasis from result-oriented assessments, which often neglect the reasoning process, to a more comprehensive evaluation.
By applying this paradigm in the GSM8K dataset, we have developed the MR-GSM8K benchmark.
arXiv Detail & Related papers (2023-12-28T15:49:43Z) - Lost in Translation: When GPT-4V(ision) Can't See Eye to Eye with Text.
A Vision-Language-Consistency Analysis of VLLMs and Beyond [7.760124498553333]
We study whether vision-language models execute vision and language tasks consistently or independently.
We introduce a systematic framework that quantifies the capability disparities between different modalities in the multi-modal setting.
We introduce "Vision Description Prompting," a method that effectively improves performance in challenging vision-related tasks.
arXiv Detail & Related papers (2023-10-19T06:45:11Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can generate human-like outputs.
We evaluate existing state-of-the-art VLMs and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency.
We propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs.
arXiv Detail & Related papers (2023-09-08T17:49:44Z) - Learning Differentiable Logic Programs for Abstract Visual Reasoning [22.167393386879294]
Differentiable forward reasoning has been developed to integrate reasoning with gradient-based machine learning paradigms.<n>NEUMANN is a graph-based differentiable forward reasoner, passing messages in a memory-efficient manner and handling structured programs with functors.<n>We demonstrate that NEUMANN solves visual reasoning tasks efficiently, outperforming neural, symbolic, and neuro-symbolic baselines.
arXiv Detail & Related papers (2023-07-03T11:02:40Z) - Exploring CLIP for Assessing the Look and Feel of Images [87.97623543523858]
We introduce Contrastive Language-Image Pre-training (CLIP) models for assessing both the quality perception (look) and abstract perception (feel) of images in a zero-shot manner.
Our results show that CLIP captures meaningful priors that generalize well to different perceptual assessments.
arXiv Detail & Related papers (2022-07-25T17:58:16Z) - Visual Perturbation-aware Collaborative Learning for Overcoming the
Language Prior Problem [60.0878532426877]
We propose a novel collaborative learning scheme from the viewpoint of visual perturbation calibration.
Specifically, we devise a visual controller to construct two sorts of curated images with different perturbation extents.
The experimental results on two diagnostic VQA-CP benchmark datasets evidently demonstrate its effectiveness.
arXiv Detail & Related papers (2022-07-24T23:50:52Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Self-supervised Learning from a Multi-view Perspective [121.63655399591681]
We show that self-supervised representations can extract task-relevant information and discard task-irrelevant information.
Our theoretical framework paves the way to a larger space of self-supervised learning objective design.
arXiv Detail & Related papers (2020-06-10T00:21:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.