Accountability of Generative AI: Exploring a Precautionary Approach for "Artificially Created Nature"
- URL: http://arxiv.org/abs/2505.07178v1
- Date: Mon, 12 May 2025 02:10:55 GMT
- Title: Accountability of Generative AI: Exploring a Precautionary Approach for "Artificially Created Nature"
- Authors: Yuri Nakao,
- Abstract summary: We argue that transparency is not a sufficient condition for accountability but can contribute to its improvement.<n>We then discuss that if it is not possible to make generative AI transparent, generative AI technology becomes artificially created nature'' in a metaphorical sense.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of generative artificial intelligence (AI) technologies raises concerns about the accountability of sociotechnical systems. Current generative AI systems rely on complex mechanisms that make it difficult for even experts to fully trace the reasons behind the outputs. This paper first examines existing research on AI transparency and accountability and argues that transparency is not a sufficient condition for accountability but can contribute to its improvement. We then discuss that if it is not possible to make generative AI transparent, generative AI technology becomes ``artificially created nature'' in a metaphorical sense, and suggest using the precautionary principle approach to consider AI risks. Finally, we propose that a platform for citizen participation is needed to address the risks of generative AI.
Related papers
- Open and Sustainable AI: challenges, opportunities and the road ahead in the life sciences [50.9036832382286]
We review the increased erosion of trust in AI research outputs, driven by the issues of poor reusability.<n>We discuss the fragmented components of the AI ecosystem and lack of guiding pathways to best support Open and Sustainable AI.<n>Our work connects researchers with relevant AI resources, facilitating the implementation of sustainable, reusable and transparent AI.
arXiv Detail & Related papers (2025-05-22T12:52:34Z) - Explainable AI is Responsible AI: How Explainability Creates Trustworthy
and Socially Responsible Artificial Intelligence [9.844540637074836]
This is the topic of responsible AI, which emphasizes the need to develop trustworthy AI systems.
XAI has been broadly considered as a building block for responsible AI (RAI)
Our findings lead us to conclude that XAI is an essential foundation for every pillar of RAI.
arXiv Detail & Related papers (2023-12-04T00:54:04Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
Deepfakes and the spread of m/disinformation have emerged as formidable threats to the integrity of information ecosystems worldwide.
We highlight the mechanisms through which generative AI based on large models (LM-based GenAI) craft seemingly convincing yet fabricated contents.
We introduce an integrated framework that combines advanced detection algorithms, cross-platform collaboration, and policy-driven initiatives.
arXiv Detail & Related papers (2023-11-29T06:47:58Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.<n>It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.<n>We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - VerifAI: Verified Generative AI [22.14231506649365]
Generative AI has made significant strides, yet concerns about its accuracy and reliability continue to grow.
We propose that verifying the outputs of generative AI from a data management perspective is an emerging issue for generative AI.
Our vision is to promote the development of verifiable generative AI and contribute to a more trustworthy and responsible use of AI.
arXiv Detail & Related papers (2023-07-06T06:11:51Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.