Causal View of Time Series Imputation: Some Identification Results on Missing Mechanism
- URL: http://arxiv.org/abs/2505.07180v1
- Date: Mon, 12 May 2025 02:13:14 GMT
- Title: Causal View of Time Series Imputation: Some Identification Results on Missing Mechanism
- Authors: Ruichu Cai, Kaitao Zheng, Junxian Huang, Zijian Li, Zhengming Chen, Boyan Xu, Zhifeng Hao,
- Abstract summary: Time series imputation is one of the most challenge problems and has broad applications in various fields like health care and the Internet of Things.<n>In real-world scenarios, different types of missing mechanisms, like MAR (Missing At Random), and MNAR (Missing Not At Random) can occur in time series data.<n>We propose a framework for time series imputation problem by exploring Different Missing Mechanisms (DMM) and tailoring solutions accordingly.
- Score: 21.428488162518732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series imputation is one of the most challenge problems and has broad applications in various fields like health care and the Internet of Things. Existing methods mainly aim to model the temporally latent dependencies and the generation process from the observed time series data. In real-world scenarios, different types of missing mechanisms, like MAR (Missing At Random), and MNAR (Missing Not At Random) can occur in time series data. However, existing methods often overlook the difference among the aforementioned missing mechanisms and use a single model for time series imputation, which can easily lead to misleading results due to mechanism mismatching. In this paper, we propose a framework for time series imputation problem by exploring Different Missing Mechanisms (DMM in short) and tailoring solutions accordingly. Specifically, we first analyze the data generation processes with temporal latent states and missing cause variables for different mechanisms. Sequentially, we model these generation processes via variational inference and estimate prior distributions of latent variables via normalizing flow-based neural architecture. Furthermore, we establish identifiability results under the nonlinear independent component analysis framework to show that latent variables are identifiable. Experimental results show that our method surpasses existing time series imputation techniques across various datasets with different missing mechanisms, demonstrating its effectiveness in real-world applications.
Related papers
- TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model [11.281386703572842]
TimeDiT is a diffusion transformer model that combines temporal dependency learning with probabilistic sampling.<n>TimeDiT employs a unified masking mechanism to harmonize the training and inference process across diverse tasks.<n>Our systematic evaluation demonstrates TimeDiT's effectiveness both in fundamental tasks, i.e., forecasting and imputation, through zero-shot/fine-tuning.
arXiv Detail & Related papers (2024-09-03T22:31:57Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
We present CASTOR, a novel method that concurrently learns the Directed Acyclic Graph (DAG) for each regime.<n>We establish the identifiability of the regimes and DAGs within our framework.<n>Experiments show that CASTOR consistently outperforms existing causal discovery models.
arXiv Detail & Related papers (2023-11-02T17:26:49Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - On Disentanglement in Gaussian Process Variational Autoencoders [3.403279506246879]
We introduce a class of models recently introduced that have been successful in different tasks on time series data.
Our model exploits the temporal structure of the data by modeling each latent channel with a GP prior and employing a structured variational distribution.
We provide evidence that we can learn meaningful disentangled representations on real-world medical time series data.
arXiv Detail & Related papers (2021-02-10T15:49:27Z) - A Survey on Principles, Models and Methods for Learning from Irregularly
Sampled Time Series [18.224344440110862]
Irregularly sampled time series data arise naturally in many application domains including biology, ecology, climate science, astronomy, and health.
We first describe several axes along which approaches to learning from irregularly sampled time series differ.
We then survey the recent literature organized primarily along the axis of modeling primitives.
arXiv Detail & Related papers (2020-11-30T23:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.