HuB: Learning Extreme Humanoid Balance
- URL: http://arxiv.org/abs/2505.07294v1
- Date: Mon, 12 May 2025 07:31:42 GMT
- Title: HuB: Learning Extreme Humanoid Balance
- Authors: Tong Zhang, Boyuan Zheng, Ruiqian Nai, Yingdong Hu, Yen-Jen Wang, Geng Chen, Fanqi Lin, Jiongye Li, Chuye Hong, Koushil Sreenath, Yang Gao,
- Abstract summary: We propose HuB (Humanoid Balance), a unified framework that integrates reference motion refinement, balance-aware policy learning, and sim-to-real training.<n>We validate our approach on the Unitree G1 humanoid robot across challenging quasi-static balance tasks.
- Score: 21.986188490182993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The human body demonstrates exceptional motor capabilities-such as standing steadily on one foot or performing a high kick with the leg raised over 1.5 meters-both requiring precise balance control. While recent research on humanoid control has leveraged reinforcement learning to track human motions for skill acquisition, applying this paradigm to balance-intensive tasks remains challenging. In this work, we identify three key obstacles: instability from reference motion errors, learning difficulties due to morphological mismatch, and the sim-to-real gap caused by sensor noise and unmodeled dynamics. To address these challenges, we propose HuB (Humanoid Balance), a unified framework that integrates reference motion refinement, balance-aware policy learning, and sim-to-real robustness training, with each component targeting a specific challenge. We validate our approach on the Unitree G1 humanoid robot across challenging quasi-static balance tasks, including extreme single-legged poses such as Swallow Balance and Bruce Lee's Kick. Our policy remains stable even under strong physical disturbances-such as a forceful soccer strike-while baseline methods consistently fail to complete these tasks. Project website: https://hub-robot.github.io
Related papers
- KungfuBot: Physics-Based Humanoid Whole-Body Control for Learning Highly-Dynamic Skills [50.34487144149439]
This paper presents a physics-based humanoid control framework, aiming to master highly-dynamic human behaviors such as Kungfu and dancing.<n>For motion processing, we design a pipeline to extract, filter out, correct, and retarget motions, while ensuring compliance with physical constraints.<n>For motion imitation, we formulate a bi-level optimization problem to dynamically adjust the tracking accuracy tolerance.<n>In experiments, we train whole-body control policies to imitate a set of highly-dynamic motions.
arXiv Detail & Related papers (2025-06-15T13:58:53Z) - Bipedal Balance Control with Whole-body Musculoskeletal Standing and Falling Simulations [11.689074741652163]
Balance control is important for human and bipedal robotic systems.<n>This work offers unique muscle-level insights into human balance dynamics.<n>It could provide a foundation for developing targeted interventions for individuals with balance impairments.
arXiv Detail & Related papers (2025-06-11T04:23:49Z) - Humanoid Whole-Body Locomotion on Narrow Terrain via Dynamic Balance and Reinforcement Learning [54.26816599309778]
We propose a novel whole-body locomotion algorithm based on dynamic balance and Reinforcement Learning (RL)<n> Specifically, we introduce a dynamic balance mechanism by leveraging an extended measure of Zero-Moment Point (ZMP)-driven rewards and task-driven rewards in a whole-body actor-critic framework.<n> Experiments conducted on a full-sized Unitree H1-2 robot verify the ability of our method to maintain balance on extremely narrow terrains.
arXiv Detail & Related papers (2025-02-24T14:53:45Z) - HOMIE: Humanoid Loco-Manipulation with Isomorphic Exoskeleton Cockpit [52.12750762494588]
This paper introduces HOMIE, a semi-autonomous teleoperation system.<n>It combines a reinforcement learning policy for body control mapped to a pedal, an isomorphic exoskeleton arm for arm control, and motion-sensing gloves for hand control.<n>The system is fully open-source, demos and code can be found in our https://homietele.org/.
arXiv Detail & Related papers (2025-02-18T16:33:38Z) - Agile and versatile bipedal robot tracking control through reinforcement learning [12.831810518025309]
This paper proposes a versatile controller for bipedal robots.
It achieves ankle and body trajectory tracking across a wide range of gaits using a single small-scale neural network.
Highly flexible gait control can be achieved by combining minimal control units with high-level policy.
arXiv Detail & Related papers (2024-04-12T05:25:03Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Natural and Robust Walking using Reinforcement Learning without
Demonstrations in High-Dimensional Musculoskeletal Models [29.592874007260342]
Humans excel at robust bipedal walking in complex natural environments.
It is still not fully understood how the nervous system resolves the musculoskeletal redundancy to solve the multi-objective control problem.
arXiv Detail & Related papers (2023-09-06T13:20:31Z) - Learning Vision-based Pursuit-Evasion Robot Policies [54.52536214251999]
We develop a fully-observable robot policy that generates supervision for a partially-observable one.
We deploy our policy on a physical quadruped robot with an RGB-D camera on pursuit-evasion interactions in the wild.
arXiv Detail & Related papers (2023-08-30T17:59:05Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
We propose the first framework to learn control policies for vision-based human-to-robot handovers.
We show significant performance gains over baselines on a simulation benchmark, sim-to-sim transfer and sim-to-real transfer.
arXiv Detail & Related papers (2023-03-30T17:58:36Z) - From Motor Control to Team Play in Simulated Humanoid Football [56.86144022071756]
We train teams of physically simulated humanoid avatars to play football in a realistic virtual environment.
In a sequence of stages, players first learn to control a fully articulated body to perform realistic, human-like movements.
They then acquire mid-level football skills such as dribbling and shooting.
Finally, they develop awareness of others and play as a team, bridging the gap between low-level motor control at a timescale of milliseconds.
arXiv Detail & Related papers (2021-05-25T20:17:10Z) - Residual Force Control for Agile Human Behavior Imitation and Extended
Motion Synthesis [32.22704734791378]
Reinforcement learning has shown great promise for realistic human behaviors by learning humanoid control policies from motion capture data.
It is still very challenging to reproduce sophisticated human skills like ballet dance, or to stably imitate long-term human behaviors with complex transitions.
We propose a novel approach, residual force control (RFC), that augments a humanoid control policy by adding external residual forces into the action space.
arXiv Detail & Related papers (2020-06-12T17:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.