論文の概要: Human Motion Prediction via Test-domain-aware Adaptation with Easily-available Human Motions Estimated from Videos
- arxiv url: http://arxiv.org/abs/2505.07301v2
- Date: Tue, 13 May 2025 11:34:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 12:30:10.446451
- Title: Human Motion Prediction via Test-domain-aware Adaptation with Easily-available Human Motions Estimated from Videos
- Title(参考訳): ビデオから推定した容易な人体動作を用いたテストドメイン認識適応による人体動作予測
- Authors: Katsuki Shimbo, Hiromu Taketsugu, Norimichi Ukita,
- Abstract要約: 3Dヒューマンモーション予測(HMP)では、従来の方法では、高価なモーションキャプチャーデータでHMPモデルを訓練する。
本稿では,簡単なビデオから推定されたポーズを用いて,HMPの学習能力を高めることを提案する。
- 参考スコア(独自算出の注目度): 12.363185535693276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In 3D Human Motion Prediction (HMP), conventional methods train HMP models with expensive motion capture data. However, the data collection cost of such motion capture data limits the data diversity, which leads to poor generalizability to unseen motions or subjects. To address this issue, this paper proposes to enhance HMP with additional learning using estimated poses from easily available videos. The 2D poses estimated from the monocular videos are carefully transformed into motion capture-style 3D motions through our pipeline. By additional learning with the obtained motions, the HMP model is adapted to the test domain. The experimental results demonstrate the quantitative and qualitative impact of our method.
- Abstract(参考訳): 3Dヒューマンモーション予測(HMP)では、従来の方法では、高価なモーションキャプチャーデータでHMPモデルを訓練する。
しかし、このようなモーションキャプチャーデータの収集コストはデータの多様性を制限するため、目に見えない動きや被写体に対する一般化性が低い。
この問題に対処するために,本研究では,容易に利用可能なビデオから推定されたポーズを用いて,HMPを付加的な学習で拡張することを提案する。
モノクラービデオから推定される2Dのポーズは、パイプラインを通して注意深くモーションキャプチャースタイルの3Dモーションに変換されます。
得られた動きのさらなる学習により、HMPモデルはテスト領域に適応する。
実験により,本手法の定量的および定性的な影響を実証した。
関連論文リスト
- A Plug-and-Play Physical Motion Restoration Approach for In-the-Wild High-Difficulty Motions [56.709280823844374]
動作コンテキストとビデオマスクを利用して、欠陥のある動作を修復するマスクベースの動作補正モジュール(MCM)を導入する。
また,運動模倣のための事前訓練および適応手法を用いた物理ベースの運動伝達モジュール (PTM) を提案する。
本手法は,高速な移動を含む映像モーションキャプチャ結果を物理的に洗練するためのプラグイン・アンド・プレイモジュールとして設計されている。
論文 参考訳(メタデータ) (2024-12-23T08:26:00Z) - COIN: Control-Inpainting Diffusion Prior for Human and Camera Motion Estimation [98.05046790227561]
COINは、人間の動きとカメラの動きを細粒度に制御できる、コントロール・インパインティング・モーション拡散である。
COINは、グローバルな人間の動き推定とカメラの動き推定という観点から、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-08-29T10:36:29Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
本研究では,モノクラービデオから3次元運動と深度を協調的に学習する自己教師手法を提案する。
本システムでは,深度を推定する深度推定モジュールと,エゴモーションと3次元物体の動きを推定する新しい分解対象3次元運動推定モジュールを備える。
我々のモデルは評価されたすべての設定において優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-03-09T12:22:46Z) - HMP: Hand Motion Priors for Pose and Shape Estimation from Video [52.39020275278984]
我々は,多種多様な高品質の手の動きを特徴とするAMASSデータセットに基づいて,手動に特有な生成動作を開発する。
頑健な動きの統合は、特に隠蔽されたシナリオにおいて、パフォーマンスを著しく向上させる。
HO3DおよびDexYCBデータセットの質的および定量的評価により,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-12-27T22:35:33Z) - DiffMesh: A Motion-aware Diffusion Framework for Human Mesh Recovery from Videos [20.895221536570627]
ヒューマンメッシュリカバリ(Human Mesh recovery, HMR)は、さまざまな現実世界のアプリケーションに対して、リッチな人体情報を提供する。
ビデオベースのアプローチはこの問題を緩和するために時間的情報を活用する。
DiffMeshはビデオベースのHMRのための革新的な動き認識型拡散型フレームワークである。
論文 参考訳(メタデータ) (2023-03-23T16:15:18Z) - Motion Matters: Neural Motion Transfer for Better Camera Physiological
Measurement [25.27559386977351]
身体の動きは、ビデオから微妙な心臓の脈を回復しようとするとき、最も重要なノイズ源の1つである。
我々は,遠隔光合成のタスクのために,ニューラルビデオ合成アプローチをビデオの拡張に適用する。
各種の最先端手法を用いて,既存のデータセット間結果よりも47%向上したことを示す。
論文 参考訳(メタデータ) (2023-03-21T17:51:23Z) - HuMoR: 3D Human Motion Model for Robust Pose Estimation [100.55369985297797]
HuMoRは、時間的ポーズと形状のロバスト推定のための3Dヒューマンモーションモデルです。
モーションシーケンスの各ステップにおけるポーズの変化の分布を学習する条件付き変分オートエンコーダについて紹介する。
本モデルが大規模モーションキャプチャーデータセットのトレーニング後に多様な動きや体型に一般化することを示す。
論文 参考訳(メタデータ) (2021-05-10T21:04:55Z) - Synergetic Reconstruction from 2D Pose and 3D Motion for Wide-Space
Multi-Person Video Motion Capture in the Wild [3.0015034534260665]
マルチカメラの精度と滑らかさを考慮したマーカーレスモーションキャプチャ手法を提案する。
提案手法は,各人物の3Dポーズを予測し,マルチカメラ画像のバウンディングボックスを決定する。
提案手法を,様々なデータセットと実スポーツフィールドを用いて評価した。
論文 参考訳(メタデータ) (2020-01-16T02:14:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。