Enabling Privacy-Aware AI-Based Ergonomic Analysis
- URL: http://arxiv.org/abs/2505.07306v1
- Date: Mon, 12 May 2025 07:52:48 GMT
- Title: Enabling Privacy-Aware AI-Based Ergonomic Analysis
- Authors: Sander De Coninck, Emilio Gamba, Bart Van Doninck, Abdellatif Bey-Temsamani, Sam Leroux, Pieter Simoens,
- Abstract summary: Musculoskeletal disorders (MSDs) are a leading cause of injury and productivity loss in the manufacturing industry.<n>We propose a privacy-aware ergonomic assessment framework utilizing machine learning techniques.
- Score: 2.4622431772551256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Musculoskeletal disorders (MSDs) are a leading cause of injury and productivity loss in the manufacturing industry, incurring substantial economic costs. Ergonomic assessments can mitigate these risks by identifying workplace adjustments that improve posture and reduce strain. Camera-based systems offer a non-intrusive, cost-effective method for continuous ergonomic tracking, but they also raise significant privacy concerns. To address this, we propose a privacy-aware ergonomic assessment framework utilizing machine learning techniques. Our approach employs adversarial training to develop a lightweight neural network that obfuscates video data, preserving only the essential information needed for human pose estimation. This obfuscation ensures compatibility with standard pose estimation algorithms, maintaining high accuracy while protecting privacy. The obfuscated video data is transmitted to a central server, where state-of-the-art keypoint detection algorithms extract body landmarks. Using multi-view integration, 3D keypoints are reconstructed and evaluated with the Rapid Entire Body Assessment (REBA) method. Our system provides a secure, effective solution for ergonomic monitoring in industrial environments, addressing both privacy and workplace safety concerns.
Related papers
- Privacy-Preserving Hybrid Ensemble Model for Network Anomaly Detection: Balancing Security and Data Protection [6.5920909061458355]
We propose a hybrid ensemble model that incorporates privacy-preserving techniques to address both detection accuracy and data protection.<n>Our model combines the strengths of several machine learning algo- rithms, including K-Nearest Neighbors (KNN), Support Vector Machines (SVM), XGBoost, and Artificial Neural Networks (ANN)
arXiv Detail & Related papers (2025-02-13T06:33:16Z) - Differentially Private Integrated Decision Gradients (IDG-DP) for Radar-based Human Activity Recognition [5.955900146668931]
Recent research has shown high accuracy in recognizing subjects or gender from radar gait patterns, raising privacy concerns.
This study addresses these issues by investigating privacy vulnerabilities in radar-based Human Activity Recognition (HAR) systems.
We propose a novel method for privacy preservation using Differential Privacy (DP) driven by attributions derived with Integrated Decision Gradient (IDG) algorithm.
arXiv Detail & Related papers (2024-11-04T14:08:26Z) - Real-Time Posture Monitoring and Risk Assessment for Manual Lifting Tasks Using MediaPipe and LSTM [1.675857332621569]
Musculoskeletal disorders (MSDs) are a significant concern for workers involved in manual lifting.
Traditional methods for posture correction are often inadequate due to delayed feedback and lack of personalized assessment.
Our proposed solution integrates AI-driven posture detection, detailed keypoint analysis, risk level determination, and real-time feedback delivered through a user-friendly web interface.
arXiv Detail & Related papers (2024-08-23T02:19:52Z) - Privacy-Preserving Collaborative Genomic Research: A Real-Life Deployment and Vision [2.7968600664591983]
This paper presents a privacy-preserving framework for genomic research, developed in collaboration with Lynx.MD.
The framework addresses critical cybersecurity and privacy challenges, enabling the privacy-preserving sharing and analysis of genomic data.
Implementing the framework within Lynx.MD involves encoding genomic data into binary formats and applying noise through controlled perturbation techniques.
arXiv Detail & Related papers (2024-07-12T05:43:13Z) - Privacy-Preserving Gaze Data Streaming in Immersive Interactive Virtual Reality: Robustness and User Experience [11.130411904676095]
Eye tracking data, if exposed, can be used for re-identification attacks.
We develop a methodology to evaluate real-time privacy mechanisms for interactive VR applications.
arXiv Detail & Related papers (2024-02-12T14:53:12Z) - Shielding the Unseen: Privacy Protection through Poisoning NeRF with
Spatial Deformation [59.302770084115814]
We introduce an innovative method of safeguarding user privacy against the generative capabilities of Neural Radiance Fields (NeRF) models.
Our novel poisoning attack method induces changes to observed views that are imperceptible to the human eye, yet potent enough to disrupt NeRF's ability to accurately reconstruct a 3D scene.
We extensively test our approach on two common NeRF benchmark datasets consisting of 29 real-world scenes with high-quality images.
arXiv Detail & Related papers (2023-10-04T19:35:56Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
We present a semi-formal verification approach for decision-making tasks based on interval analysis.
Our method obtains comparable results over standard benchmarks with respect to formal verifiers.
Our approach allows to efficiently evaluate safety properties for decision-making models in practical applications.
arXiv Detail & Related papers (2020-10-19T11:18:06Z) - Perceiving Humans: from Monocular 3D Localization to Social Distancing [93.03056743850141]
We present a new cost-effective vision-based method that perceives humans' locations in 3D and their body orientation from a single image.
We show that it is possible to rethink the concept of "social distancing" as a form of social interaction in contrast to a simple location-based rule.
arXiv Detail & Related papers (2020-09-01T10:12:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.