Real-Time Posture Monitoring and Risk Assessment for Manual Lifting Tasks Using MediaPipe and LSTM
- URL: http://arxiv.org/abs/2408.12796v1
- Date: Fri, 23 Aug 2024 02:19:52 GMT
- Title: Real-Time Posture Monitoring and Risk Assessment for Manual Lifting Tasks Using MediaPipe and LSTM
- Authors: Ereena Bagga, Ang Yang,
- Abstract summary: Musculoskeletal disorders (MSDs) are a significant concern for workers involved in manual lifting.
Traditional methods for posture correction are often inadequate due to delayed feedback and lack of personalized assessment.
Our proposed solution integrates AI-driven posture detection, detailed keypoint analysis, risk level determination, and real-time feedback delivered through a user-friendly web interface.
- Score: 1.675857332621569
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This research focuses on developing a real-time posture monitoring and risk assessment system for manual lifting tasks using advanced AI and computer vision technologies. Musculoskeletal disorders (MSDs) are a significant concern for workers involved in manual lifting, and traditional methods for posture correction are often inadequate due to delayed feedback and lack of personalized assessment. Our proposed solution integrates AI-driven posture detection, detailed keypoint analysis, risk level determination, and real-time feedback delivered through a user-friendly web interface. The system aims to improve posture, reduce the risk of MSDs, and enhance user engagement. The research involves comprehensive data collection, model training, and iterative development to ensure high accuracy and user satisfaction. The solution's effectiveness is evaluated against existing methodologies, demonstrating significant improvements in real-time feedback and risk assessment. This study contributes to the field by offering a novel approach to posture correction that addresses existing gaps and provides practical, immediate benefits to users.
Related papers
- Keeping Medical AI Healthy: A Review of Detection and Correction Methods for System Degradation [6.781778751487079]
This review presents a forward-looking perspective on monitoring and maintaining the "health" of AI systems in healthcare.<n>We highlight the urgent need for continuous performance monitoring, early degradation detection, and effective self-correction mechanisms.<n>This work aims to guide the development of reliable, robust medical AI systems capable of sustaining safe, long-term deployment in dynamic clinical settings.
arXiv Detail & Related papers (2025-06-20T19:22:07Z) - Active Test-time Vision-Language Navigation [60.69722522420299]
ATENA is a test-time active learning framework that enables a practical human-robot interaction via episodic feedback on uncertain navigation outcomes.<n>In particular, ATENA learns to increase certainty in successful episodes and decrease it in failed ones, improving uncertainty calibration.<n>In addition, we propose a self-active learning strategy that enables an agent to evaluate its navigation outcomes based on confident predictions.
arXiv Detail & Related papers (2025-06-07T02:24:44Z) - A Deep Learning Approach for Facial Attribute Manipulation and Reconstruction in Surveillance and Reconnaissance [5.980822697955566]
Surveillance systems play a critical role in security and reconnaissance, but their performance is often compromised by low-quality images and videos.<n>Existing AI-based facial analysis models suffer from biases related to skin tone variations and partially occluded faces.<n>We propose a data-driven platform that enhances surveillance capabilities by generating synthetic training data tailored to compensate for dataset biases.
arXiv Detail & Related papers (2025-06-06T23:09:17Z) - Enabling Privacy-Aware AI-Based Ergonomic Analysis [2.4622431772551256]
Musculoskeletal disorders (MSDs) are a leading cause of injury and productivity loss in the manufacturing industry.<n>We propose a privacy-aware ergonomic assessment framework utilizing machine learning techniques.
arXiv Detail & Related papers (2025-05-12T07:52:48Z) - Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation [52.83870601473094]
Embodied agents exhibit immense potential across a multitude of domains.
Existing research predominantly concentrates on the security of general large language models.
This paper introduces a novel input moderation framework, meticulously designed to safeguard embodied agents.
arXiv Detail & Related papers (2025-04-22T08:34:35Z) - Fragility-aware Classification for Understanding Risk and Improving Generalization [6.926253982569273]
We introduce the Fragility Index (FI), a novel metric that evaluates classification performance from a risk-averse perspective.
We derive exact reformulations for cross-entropy loss, hinge-type loss, and Lipschitz loss, and extend the approach to deep learning models.
arXiv Detail & Related papers (2025-02-18T16:44:03Z) - SouLLMate: An Adaptive LLM-Driven System for Advanced Mental Health Support and Assessment, Based on a Systematic Application Survey [9.146311285410631]
Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources.
This study aims to provide accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies.
arXiv Detail & Related papers (2024-10-06T17:11:29Z) - InferAct: Inferring Safe Actions for LLM-Based Agents Through Preemptive Evaluation and Human Feedback [70.54226917774933]
This paper introduces InferAct, a novel approach to proactively detect potential errors before risky actions are executed.
InferAct acts as a human proxy, detecting unsafe actions and alerting users for intervention.
Experiments on three widely-used tasks demonstrate the effectiveness of InferAct.
arXiv Detail & Related papers (2024-07-16T15:24:44Z) - Enhancing Performance and User Engagement in Everyday Stress Monitoring: A Context-Aware Active Reinforcement Learning Approach [4.132425356039815]
This paper introduces a novel context-aware active learning (RL) algorithm for enhanced stress detection using smartwatches and contextual data from smartphones.
Our approach dynamically selects optimal times for deploying EMAs, utilizing the user's immediate context to maximize label accuracy and minimize intrusiveness.
This research marks a significant move towards personalized, context-driven real-time stress monitoring methods.
arXiv Detail & Related papers (2024-07-11T06:33:11Z) - RAPID: Robust APT Detection and Investigation Using Context-Aware Deep Learning [26.083244046813512]
We introduce a novel deep learning-based method for robust APT detection and investigation.
By utilizing self-supervised sequence learning and iteratively learned embeddings, our approach effectively adapts to dynamic system behavior.
Our evaluation demonstrates RAPID's effectiveness and computational efficiency in real-world scenarios.
arXiv Detail & Related papers (2024-06-08T05:39:24Z) - Analyzing Operator States and the Impact of AI-Enhanced Decision Support
in Control Rooms: A Human-in-the-Loop Specialized Reinforcement Learning
Framework for Intervention Strategies [0.9378955659006951]
In complex industrial and chemical process control rooms, effective decision-making is crucial for safety andeffi- ciency.
The experiments in this paper evaluate the impact and applications of an AI-based decision support system integrated into an improved human-machine interface.
arXiv Detail & Related papers (2024-02-20T18:31:27Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - U-PASS: an Uncertainty-guided deep learning Pipeline for Automated Sleep
Staging [61.6346401960268]
We propose a machine learning pipeline called U-PASS tailored for clinical applications that incorporates uncertainty estimation at every stage of the process.
We apply our uncertainty-guided deep learning pipeline to the challenging problem of sleep staging and demonstrate that it systematically improves performance at every stage.
arXiv Detail & Related papers (2023-06-07T08:27:36Z) - Towards an Improved Understanding of Software Vulnerability Assessment
Using Data-Driven Approaches [0.0]
The thesis advances the field of software security by providing knowledge and automation support for software vulnerability assessment.
The key contributions include a systematisation of knowledge, along with a suite of novel data-driven techniques.
arXiv Detail & Related papers (2022-07-24T10:22:28Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
We present a semi-formal verification approach for decision-making tasks based on interval analysis.
Our method obtains comparable results over standard benchmarks with respect to formal verifiers.
Our approach allows to efficiently evaluate safety properties for decision-making models in practical applications.
arXiv Detail & Related papers (2020-10-19T11:18:06Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education.
Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding.
We develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates.
arXiv Detail & Related papers (2020-02-10T00:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.