AI-Enabled Accurate Non-Invasive Assessment of Pulmonary Hypertension Progression via Multi-Modal Echocardiography
- URL: http://arxiv.org/abs/2505.07347v1
- Date: Mon, 12 May 2025 08:38:39 GMT
- Title: AI-Enabled Accurate Non-Invasive Assessment of Pulmonary Hypertension Progression via Multi-Modal Echocardiography
- Authors: Jiewen Yang, Taoran Huang, Shangwei Ding, Xiaowei Xu, Qinhua Zhao, Yong Jiang, Jiarong Guo, Bin Pu, Jiexuan Zheng, Caojin Zhang, Hongwen Fei, Xiaomeng Li,
- Abstract summary: Right heart catheterization is invasive and unsuitable for routine use.<n>MePH is a multi-view, multi-modal vision-language model to accurately assess pulmonary hypertension progression.
- Score: 19.3643462695868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Echocardiographers can detect pulmonary hypertension using Doppler echocardiography; however, accurately assessing its progression often proves challenging. Right heart catheterization (RHC), the gold standard for precise evaluation, is invasive and unsuitable for routine use, limiting its practicality for timely diagnosis and monitoring of pulmonary hypertension progression. Here, we propose MePH, a multi-view, multi-modal vision-language model to accurately assess pulmonary hypertension progression using non-invasive echocardiography. We constructed a large dataset comprising paired standardized echocardiogram videos, spectral images and RHC data, covering 1,237 patient cases from 12 medical centers. For the first time, MePH precisely models the correlation between non-invasive multi-view, multi-modal echocardiography and the pressure and resistance obtained via RHC. We show that MePH significantly outperforms echocardiographers' assessments using echocardiography, reducing the mean absolute error in estimating mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) by 49.73% and 43.81%, respectively. In eight independent external hospitals, MePH achieved a mean absolute error of 3.147 for PVR assessment. Furthermore, MePH achieved an area under the curve of 0.921, surpassing echocardiographers (area under the curve of 0.842) in accurately predicting the severity of pulmonary hypertension, whether mild or severe. A prospective study demonstrated that MePH can predict treatment efficacy for patients. Our work provides pulmonary hypertension patients with a non-invasive and timely method for monitoring disease progression, improving the accuracy and efficiency of pulmonary hypertension management while enabling earlier interventions and more personalized treatment decisions.
Related papers
- Predicting Pulmonary Hypertension in Newborns: A Multi-view VAE Approach [11.821252505620336]
Pulmonary hypertension (PH) in newborns is a critical condition characterized by elevated pressure in the pulmonary arteries.<n>We employ a multi-view variational autoencoder (VAE) for PH prediction using echocardiographic videos.<n>Our results show improved generalization and classification accuracy, highlighting the effectiveness of multi-view learning for robust PH assessment in newborns.
arXiv Detail & Related papers (2025-07-14T09:46:38Z) - Estimating Blood Pressure with a Camera: An Exploratory Study of Ambulatory Patients with Cardiovascular Disease [20.797887496336397]
Hypertension is a leading cause of morbidity and mortality worldwide.<n>The ability to diagnose and treat hypertension in the ambulatory population is hindered by limited access and poor adherence to current methods of monitoring blood pressure (BP)<n>Remote photoplethysmography (r) evaluates an individual's waveform through a standard camera without physical contact.
arXiv Detail & Related papers (2025-03-02T13:24:50Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.<n>Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.<n>In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.<n>Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers [43.17768785084301]
We train an amortized neural posterior estimator on a newly built large dataset of cardiac simulations.<n>We incorporate elements modeling effects to better align simulated data with real-world measurements.<n>The proposed framework can further integrate in-vivo data sources to refine its predictive capabilities on real-world data.
arXiv Detail & Related papers (2024-12-23T13:05:17Z) - Predicting Pulmonary Hypertension by Electrocardiograms Using Machine
Learning [0.0]
Pulmonary hypertension (PH) is a condition of high blood pressure that affects the arteries in the lungs and the right side of the heart.
The goal of this project is to create a neural network model which can process an ECG signal and detect the presence of PH with a confidence probability.
arXiv Detail & Related papers (2023-04-24T21:00:16Z) - Tensor-based Multimodal Learning for Prediction of Pulmonary Arterial Wedge Pressure from Cardiac MRI [6.21112347271845]
Heart failure is a serious and life-threatening condition that can lead to elevated pressure in the left ventricle.
PAWP is an important surrogate marker indicating high pressure in the left ventricle.
A non-invasive method is useful in quickly identifying high-risk patients from a large population.
arXiv Detail & Related papers (2023-03-14T00:05:08Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - Interpretable Prediction of Pulmonary Hypertension in Newborns using
Echocardiograms [2.770437783544638]
Pulmonary hypertension (PH) in newborns and infants is a complex condition associated with several pulmonary, cardiac, and systemic diseases.
We present an interpretable multi-view video-based deep learning approach to predict PH for a cohort 194 newborns using echocardiograms.
arXiv Detail & Related papers (2022-03-24T12:33:58Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.