Tensor-based Multimodal Learning for Prediction of Pulmonary Arterial Wedge Pressure from Cardiac MRI
- URL: http://arxiv.org/abs/2303.07540v2
- Date: Sat, 6 Apr 2024 19:56:42 GMT
- Title: Tensor-based Multimodal Learning for Prediction of Pulmonary Arterial Wedge Pressure from Cardiac MRI
- Authors: Prasun C. Tripathi, Mohammod N. I. Suvon, Lawrence Schobs, Shuo Zhou, Samer Alabed, Andrew J. Swift, Haiping Lu,
- Abstract summary: Heart failure is a serious and life-threatening condition that can lead to elevated pressure in the left ventricle.
PAWP is an important surrogate marker indicating high pressure in the left ventricle.
A non-invasive method is useful in quickly identifying high-risk patients from a large population.
- Score: 6.21112347271845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heart failure is a serious and life-threatening condition that can lead to elevated pressure in the left ventricle. Pulmonary Arterial Wedge Pressure (PAWP) is an important surrogate marker indicating high pressure in the left ventricle. PAWP is determined by Right Heart Catheterization (RHC) but it is an invasive procedure. A non-invasive method is useful in quickly identifying high-risk patients from a large population. In this work, we develop a tensor learning-based pipeline for identifying PAWP from multimodal cardiac Magnetic Resonance Imaging (MRI). This pipeline extracts spatial and temporal features from high-dimensional scans. For quality control, we incorporate an epistemic uncertainty-based binning strategy to identify poor-quality training samples. To improve the performance, we learn complementary information by integrating features from multimodal data: cardiac MRI with short-axis and four-chamber views, and Electronic Health Records. The experimental analysis on a large cohort of $1346$ subjects who underwent the RHC procedure for PAWP estimation indicates that the proposed pipeline has a diagnostic value and can produce promising performance with significant improvement over the baseline in clinical practice (i.e., $\Delta$AUC $=0.10$, $\Delta$Accuracy $=0.06$, and $\Delta$MCC $=0.39$). The decision curve analysis further confirms the clinical utility of our method.
Related papers
- Interpretable Multimodal Learning for Cardiovascular Hemodynamics Assessment [5.854275745400326]
Pulmonary Arterial Wedge Pressure (PAWP) is an essential marker to detect heart failure.
In this paper, we propose a multimodal learning pipeline to predict PAWP marker.
arXiv Detail & Related papers (2024-04-06T19:42:25Z) - Deep Metric Learning for the Hemodynamics Inference with
Electrocardiogram Signals [14.972877620537686]
We use a dataset that contains over 5.4 million ECGs without concomitant central pressure labels to pre-train a self-supervised DML model.
A supervised DML model that uses ECGs with access to 8,172 mPCWP labels demonstrated significantly better performance on the mPCWP regression task.
arXiv Detail & Related papers (2023-08-09T01:30:07Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
We present a novel approach for unpaired image-to-image translation of prostate MRIs and an uncertainty-aware training approach for classifying clinically significant PCa.
Our approach involves a novel pipeline for translating unpaired 3.0T multi-parametric prostate MRIs to 1.5T, thereby augmenting the available training data.
Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work.
arXiv Detail & Related papers (2023-07-02T05:26:54Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Weakly Supervised Attention Model for RV StrainClassification from
volumetric CTPA Scans [2.7554288121906296]
Pulmonary embolus (PE) refers to obstruction of pulmonary arteries by blood clots.
High-risk PE is caused by right ventricular (RV) dysfunction from acute pressure overload.
We developed a weakly supervised deep learning algorithm, with an emphasis on a novel attention mechanism, to automatically classify RV strain.
arXiv Detail & Related papers (2021-07-26T07:57:31Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - Interpretability of a Deep Learning Model in the Application of Cardiac
MRI Segmentation with an ACDC Challenge Dataset [8.460936676149101]
The project investigates if it is possible to discover concepts representative for different cardiac conditions from the deep network trained to segment crdiac structures.
The contribution of this study is a novel application of the explainability method D-TCAV for cardiac MRI anlysis.
arXiv Detail & Related papers (2021-03-15T17:57:40Z) - Left Ventricular Wall Motion Estimation by Active Polynomials for Acute
Myocardial Infarction Detection [18.93271742586598]
This paper proposes a novel approach, Active Polynomials, which can accurately estimate the global motion of the Left Ventricular (LV) wall from any echo in a robust and accurate way.
The proposed algorithm quantifies the true wall motion occurring in LV wall segments so as to assist cardiologists diagnose early signs of an acute MI.
arXiv Detail & Related papers (2020-08-11T10:29:22Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.