Unified Continuous Generative Models
- URL: http://arxiv.org/abs/2505.07447v2
- Date: Tue, 20 May 2025 12:27:53 GMT
- Title: Unified Continuous Generative Models
- Authors: Peng Sun, Yi Jiang, Tao Lin,
- Abstract summary: We introduce a unified framework for training, sampling, and analyzing continuous generative models.<n>Our implementation achieves state-of-the-art (SOTA) performance.
- Score: 12.358393766570732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in continuous generative models, including multi-step approaches like diffusion and flow-matching (typically requiring 8-1000 sampling steps) and few-step methods such as consistency models (typically 1-8 steps), have demonstrated impressive generative performance. However, existing work often treats these approaches as distinct paradigms, resulting in separate training and sampling methodologies. We introduce a unified framework for training, sampling, and analyzing these models. Our implementation, the Unified Continuous Generative Models Trainer and Sampler (UCGM-{T,S}), achieves state-of-the-art (SOTA) performance. For example, on ImageNet 256x256 using a 675M diffusion transformer, UCGM-T trains a multi-step model achieving 1.30 FID in 20 steps and a few-step model reaching 1.42 FID in just 2 steps. Additionally, applying UCGM-S to a pre-trained model (previously 1.26 FID at 250 steps) improves performance to 1.06 FID in only 40 steps. Code is available at: https://github.com/LINs-lab/UCGM.
Related papers
- Inductive Moment Matching [80.96561758341664]
We propose Inductive Moment Matching (IMM), a new class of generative models for one- or few-step sampling with a single-stage training procedure.<n>IMM surpasses diffusion models on ImageNet-256x256 with 1.99 FID using only 8 inference steps and achieves state-of-the-art 2-step FID of 1.98 on CIFAR-10 for a model trained from scratch.
arXiv Detail & Related papers (2025-03-10T17:37:39Z) - One-Step Diffusion Distillation through Score Implicit Matching [74.91234358410281]
We present Score Implicit Matching (SIM) a new approach to distilling pre-trained diffusion models into single-step generator models.
SIM shows strong empirical performances for one-step generators.
By applying SIM to a leading transformer-based diffusion model, we distill a single-step generator for text-to-image generation.
arXiv Detail & Related papers (2024-10-22T08:17:20Z) - Truncated Consistency Models [57.50243901368328]
Training consistency models requires learning to map all intermediate points along PF ODE trajectories to their corresponding endpoints.<n>We empirically find that this training paradigm limits the one-step generation performance of consistency models.<n>We propose a new parameterization of the consistency function and a two-stage training procedure that prevents the truncated-time training from collapsing to a trivial solution.
arXiv Detail & Related papers (2024-10-18T22:38:08Z) - One Step Diffusion via Shortcut Models [109.72495454280627]
We introduce shortcut models, a family of generative models that use a single network and training phase to produce high-quality samples.<n>Shortcut models condition the network on the current noise level and also on the desired step size, allowing the model to skip ahead in the generation process.<n>Compared to distillation, shortcut models reduce complexity to a single network and training phase and additionally allow varying step budgets at inference time.
arXiv Detail & Related papers (2024-10-16T13:34:40Z) - Directly Denoising Diffusion Models [6.109141407163027]
We present Directly Denoising Diffusion Model (DDDM), a simple and generic approach for generating realistic images with few-step sampling.
Our model achieves FID scores of 2.57 and 2.33 on CIFAR-10 in one-step and two-step sampling respectively, surpassing those obtained from GANs and distillation-based models.
For ImageNet 64x64, our approach stands as a competitive contender against leading models.
arXiv Detail & Related papers (2024-05-22T11:20:32Z) - Multistep Consistency Models [24.443707181138553]
A 1-step consistency model is a conventional consistency model whereas a $infty$-step consistency model is a diffusion model.
By increasing the sample budget from a single step to 2-8 steps, we can train models more easily that generate higher quality samples.
We show that our method scales to a text-to-image diffusion model, generating samples that are close to the quality of the original model.
arXiv Detail & Related papers (2024-03-11T15:26:34Z) - AutoDiffusion: Training-Free Optimization of Time Steps and
Architectures for Automated Diffusion Model Acceleration [57.846038404893626]
We propose to search the optimal time steps sequence and compressed model architecture in a unified framework to achieve effective image generation for diffusion models without any further training.
Experimental results show that our method achieves excellent performance by using only a few time steps, e.g. 17.86 FID score on ImageNet 64 $times$ 64 with only four steps, compared to 138.66 with DDIM.
arXiv Detail & Related papers (2023-09-19T08:57:24Z) - Consistency Models [89.68380014789861]
We propose a new family of models that generate high quality samples by directly mapping noise to data.
They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality.
They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training.
arXiv Detail & Related papers (2023-03-02T18:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.