Decoherence of quantum superpositions in near-extremal Reissner-Nordström black holes with quantum gravity corrections
- URL: http://arxiv.org/abs/2505.07480v1
- Date: Mon, 12 May 2025 12:12:22 GMT
- Title: Decoherence of quantum superpositions in near-extremal Reissner-Nordström black holes with quantum gravity corrections
- Authors: Ran Li, Zhong-Xiao Man, Jin Wang,
- Abstract summary: We study the quantum gravity corrected decoherence of quantum superpositions in the near-extremal Reissner-Nordstr"om black holes.<n>Our results demonstrate that even in the near-extremal limit where Hawking radiation is suppressed, quantum gravitational fluctuations can strongly influence the coherence of nearby quantum systems.
- Score: 5.0795915355070775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the quantum gravity corrected decoherence of quantum superpositions in the near-extremal Reissner-Nordstr\"om black holes. By employing the effective field theory approach, we model the black hole as a quantum system coupled to an external source via a scalar field, and derive the relation between the decoherence rate and the two-point correlation function of the operators acting on the black quantum system. By utilizing the low-energy Schwarzian effective theory, which captures the boundary dynamics of the $AdS_2$ near-horizon geometry of the near-extremal Reissner-Nordstr\"om black holes, we compute the decoherence rate both in the microcanonical and canonical ensembles. We find that in the microcanonical ensemble, where the black hole energy is fixed, quantum gravity corrections do not modify the decoherence rate compared to the semiclassical prediction. However, in the canonical ensemble, where the black hole is in a thermal equilibrium state, quantum gravitational effects significantly enhance the decoherence rate at low temperatures. Our results demonstrate that even in the near-extremal limit where Hawking radiation is suppressed, quantum gravitational fluctuations can strongly influence the coherence of nearby quantum systems.
Related papers
- Horizon quantum geometries and decoherence [49.1574468325115]
There is mounting theoretical evidence that black hole horizons induce decoherence on a quantum system.<n>This phenomenon has been shown to owe its existence to soft modes.<n>We show that the discreteness of the energy levels associated to the different geometric configurations might have strong impact on the results.
arXiv Detail & Related papers (2025-07-24T18:00:30Z) - Effects of quantum geometry on the decoherence induced by black holes [49.1574468325115]
In the present note we point out that quantum aspects of the geometry itself of the quantum black hole could significantly affect the results.<n>For selected values of the quantum of area proposed on various grounds in the literature, the decoherence induced by the horizon turns out to be limited to negligibly small values.
arXiv Detail & Related papers (2025-07-22T18:00:25Z) - Post-Newtonian Effective Field Theory Approach to Entanglement Harvesting, Quantum Discord and Bell's Nonlocality Bound Near a Black Hole [0.023020018305241332]
We investigate the effects of a quantum black hole on the reduced states of a pair of static qubit-type Unruh-DeWitt (UDW) detectors acting as a probe.<n>This sheds light on the nature of the quantum state of the black holes.
arXiv Detail & Related papers (2024-11-14T12:56:45Z) - Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Space-time superpositions as fluctuating geometries [0.0]
Superpositions of black holes can be described geometrically using a combined canonical formulation for space-time and quantum states.
A detailed analysis in the weak-field limit reveals quantum corrections to Newton's potential in generic semiclassical states.
arXiv Detail & Related papers (2024-05-30T15:58:00Z) - Signatures of Rotating Black Holes in Quantum Superposition [0.09118034517251884]
We show that a two-level system interacting with a quantum field residing in the spacetime exhibits resonant peaks in its response at certain values of the superposed masses.
Our results suggest that deeper insights into quantum-gravitational phenomena may be accessible via tools in relativistic quantum information and curved spacetime quantum field theory.
arXiv Detail & Related papers (2023-10-16T22:24:21Z) - System-environment dynamics of GHZ-like states in noninertial frames [14.401323451758975]
Quantum coherence, quantum entanglement and quantum nonlocality are important resources in quantum information precessing.
We study the dynamical evolution of the three-qubit GHZ-like states in non-inertial frame when one and/or two qubits undergo decoherence.
arXiv Detail & Related papers (2022-12-30T03:36:48Z) - Quantum signatures of black hole mass superpositions [0.0]
We apply our approach to analyze the dynamics of a detector in a spacetime generated by a BTZ black hole in a superposition of masses.
We find that the detector exhibits signatures of quantum-gravitational effects corroborating Bekenstein's seminal conjecture concerning the quantized mass spectrum of black holes in quantum gravity.
arXiv Detail & Related papers (2021-11-26T05:20:25Z) - Quantum simulation of Hawking radiation and curved spacetime with a
superconducting on-chip black hole [18.605453401936643]
We report a fermionic lattice-model-type realization of an analogue black hole by using a chain of 10 superconducting transmon qubits with interactions mediated by 9 transmon-type tunable couplers.
The quantum walks of quasi-particle in the curved spacetime reflect the gravitational effect near the black hole, resulting in the behaviour of stimulated Hawking radiation.
arXiv Detail & Related papers (2021-11-22T10:17:23Z) - Quantum vacuum excitation of a quasi-normal mode in an analog model of
black hole spacetime [19.767470853445776]
We use a driven-dissipative quantum fluid of microcavity polaritons as an analog model of a quantum field theory on a black-hole spacetime.
We show that, in addition to the Hawking effect at the sonic horizon, quantum fluctuations may result in a sizeable stationary excitation of a quasi-normal mode of the field theory.
arXiv Detail & Related papers (2021-10-27T14:16:12Z) - Decoherence of Dirac-particle quantumness for fermionic fields in a
dilatonic black hole [5.025019042624117]
We develop a general Bloch vector representation of quantum channel in black hole spacetimes beyond single mode approximation.
The interplay between the external reservoir noise and dilaton black hole on the dynamical behavior of quantum coherence and steerability is investigated.
arXiv Detail & Related papers (2021-05-20T12:58:30Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.