Decoherence of Dirac-particle quantumness for fermionic fields in a
dilatonic black hole
- URL: http://arxiv.org/abs/2105.09714v1
- Date: Thu, 20 May 2021 12:58:30 GMT
- Title: Decoherence of Dirac-particle quantumness for fermionic fields in a
dilatonic black hole
- Authors: Chengjun Yao, Yating Shao, Kai Yan, Yinzhong Wu, Xiang Hao
- Abstract summary: We develop a general Bloch vector representation of quantum channel in black hole spacetimes beyond single mode approximation.
The interplay between the external reservoir noise and dilaton black hole on the dynamical behavior of quantum coherence and steerability is investigated.
- Score: 5.025019042624117
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantumness of Dirac paticles for quantized fields in a dilatonic black
hole is estimated by means of quantum channel. We develop a general Bloch
vector representation of quantum channel in black hole spacetimes beyond single
mode approximation. The nonclassicality of Dirac particles can be measured by
the minimization of quantum coherence over all orthonormal basis sets. The
quantumness of the channel decreases as the dilaton parameter increases. The
interplay between the external reservoir noise and dilaton black hole on the
dynamical behavior of quantum coherence and steerability is investigated in the
Pauli basis. The external environment is modelled by a random telegraph noise
channel. The monotonous decay of quantum nonlocality occurs in the weak
coupling case. The degradation and revival of quantum nonlocality are observed
in the strong coupling condition. It is found that quantum fluctuation effects
of the external reservoir can protect quantum coherence and steerability from
the information loss of the black hole.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Space-time superpositions as fluctuating geometries [0.0]
Superpositions of black holes can be described geometrically using a combined canonical formulation for space-time and quantum states.
A detailed analysis in the weak-field limit reveals quantum corrections to Newton's potential in generic semiclassical states.
arXiv Detail & Related papers (2024-05-30T15:58:00Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Spin operator, Bell nonlocality and Tsirelson bound in quantum-gravity
induced minimal-length quantum mechanics [0.0]
We show that the spin operator acquires a momentum-dependent contribution in quantum mechanics equipped with a minimal length.
Among other consequences, this modification induces a form of quantum nonlocality stronger than the one arising in ordinary quantum mechanics.
arXiv Detail & Related papers (2022-07-21T11:22:33Z) - Quantum Zeno Manipulation of Quantum Dots [0.0]
We investigate whether and how the quantum Zeno effect, i.e., the inhibition of quantum evolution by frequent measurements, can be employed to isolate a quantum dot from its surrounding electron reservoir.
arXiv Detail & Related papers (2022-01-27T18:21:54Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Quantum signatures of black hole mass superpositions [0.0]
We apply our approach to analyze the dynamics of a detector in a spacetime generated by a BTZ black hole in a superposition of masses.
We find that the detector exhibits signatures of quantum-gravitational effects corroborating Bekenstein's seminal conjecture concerning the quantized mass spectrum of black holes in quantum gravity.
arXiv Detail & Related papers (2021-11-26T05:20:25Z) - On quantum Hall effect, Kosterlitz-Thouless phase transition, Dirac
magnetic monopole, and Bohr-Sommerfeld quantization [0.0]
We address quantization phenomena in transport and vortex/precession-motion of low-dimensional systems.
We discuss how the self-consistent Bohr-Sommerfeld quantization condition permeates the relationships between the quantization of integer Hall effect.
arXiv Detail & Related papers (2020-09-16T17:57:14Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.