SEReDeEP: Hallucination Detection in Retrieval-Augmented Models via Semantic Entropy and Context-Parameter Fusion
- URL: http://arxiv.org/abs/2505.07528v1
- Date: Mon, 12 May 2025 13:10:46 GMT
- Title: SEReDeEP: Hallucination Detection in Retrieval-Augmented Models via Semantic Entropy and Context-Parameter Fusion
- Authors: Lei Wang,
- Abstract summary: Empirical studies demonstrate that the disequilibrium between external contextual information and internal parametric knowledge constitutes a primary factor in hallucination generation.<n>The recently proposed ReDeEP framework decouples these dual mechanisms.<n>This paper introduces SEReDeEP, which enhances computational processes through semantic entropy captured via trained linear probes.
- Score: 2.7064617166078087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) models frequently encounter hallucination phenomena when integrating external information with internal parametric knowledge. Empirical studies demonstrate that the disequilibrium between external contextual information and internal parametric knowledge constitutes a primary factor in hallucination generation. Existing hallucination detection methodologies predominantly emphasize either the external or internal mechanism in isolation, thereby overlooking their synergistic effects. The recently proposed ReDeEP framework decouples these dual mechanisms, identifying two critical contributors to hallucinations: excessive reliance on parametric knowledge encoded in feed-forward networks (FFN) and insufficient utilization of external information by attention mechanisms (particularly copy heads). ReDeEP quantitatively assesses these factors to detect hallucinations and dynamically modulates the contributions of FFNs and copy heads to attenuate their occurrence. Nevertheless, ReDeEP and numerous other hallucination detection approaches have been employed at logit-level uncertainty estimation or language-level self-consistency evaluation, inadequately address the semantic dimensions of model responses, resulting in inconsistent hallucination assessments in RAG implementations. Building upon ReDeEP's foundation, this paper introduces SEReDeEP, which enhances computational processes through semantic entropy captured via trained linear probes, thereby achieving hallucination assessments that more accurately reflect ground truth evaluations.
Related papers
- MIRAGE-Bench: LLM Agent is Hallucinating and Where to Find Them [52.764019220214344]
Hallucinations pose critical risks for large language model (LLM)-based agents.<n>We present MIRAGE-Bench, the first unified benchmark for eliciting and evaluating hallucinations in interactive environments.
arXiv Detail & Related papers (2025-07-28T17:38:29Z) - ICR Probe: Tracking Hidden State Dynamics for Reliable Hallucination Detection in LLMs [50.18087419133284]
hallucination detection methods leveraging hidden states predominantly focus on static and isolated representations.<n>We introduce a novel metric, the ICR Score, which quantifies the contribution of modules to the hidden states' update.<n>We propose a hallucination detection method, the ICR Probe, which captures the cross-layer evolution of hidden states.
arXiv Detail & Related papers (2025-07-22T11:44:26Z) - Theoretical Foundations and Mitigation of Hallucination in Large Language Models [0.0]
Hallucination in Large Language Models (LLMs) refers to the generation of content that is not faithful to the input or the real-world facts.<n>This paper provides a rigorous treatment of hallucination in LLMs, including formal definitions and theoretical analyses.
arXiv Detail & Related papers (2025-07-20T15:22:34Z) - RePPL: Recalibrating Perplexity by Uncertainty in Semantic Propagation and Language Generation for Explainable QA Hallucination Detection [29.344966292751817]
hallucinations remain a vital obstacle to large language models' trustworthy use.<n>We propose RePPL to recalibrate uncertainty measurement by these two aspects.<n>Our method achieves the best comprehensive detection performance across various QA datasets.
arXiv Detail & Related papers (2025-05-21T11:23:05Z) - HalluLens: LLM Hallucination Benchmark [49.170128733508335]
Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination"<n>This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks.
arXiv Detail & Related papers (2025-04-24T13:40:27Z) - Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling [67.14942827452161]
Vision-Language Models (VLMs) excel at visual understanding but often suffer from visual hallucinations.<n>In this work, we introduce REVERSE, a unified framework that integrates hallucination-aware training with on-the-fly self-verification.
arXiv Detail & Related papers (2025-04-17T17:59:22Z) - ParamMute: Suppressing Knowledge-Critical FFNs for Faithful Retrieval-Augmented Generation [91.20492150248106]
We investigate the internal mechanisms behind unfaithful generation and identify a subset of mid-to-deep feed-forward networks (FFNs) that are disproportionately activated in such cases.<n>We propose Parametric Knowledge Muting through FFN Suppression (ParamMute), a framework that improves contextual faithfulness by suppressing the activation of unfaithfulness-associated FFNs.<n> Experimental results show that ParamMute significantly enhances faithfulness across both CoFaithfulQA and the established ConFiQA benchmark, achieving substantial reductions in reliance on parametric memory.
arXiv Detail & Related papers (2025-02-21T15:50:41Z) - ReDeEP: Detecting Hallucination in Retrieval-Augmented Generation via Mechanistic Interpretability [27.325766792146936]
hallucinations caused by insufficient parametric (internal) knowledge.<n>Detecting such hallucinations requires disentangling how Large Language Models (LLMs) utilize external and parametric knowledge.<n>We propose ReDeEP, a novel method that detects hallucinations by decoupling LLM's utilization of external context and parametric knowledge.
arXiv Detail & Related papers (2024-10-15T09:02:09Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
Hallucinations pose a significant challenge for the practical implementation of large language models (LLMs)
We present Rowen, a novel approach that enhances LLMs with a selective retrieval augmentation process tailored to address hallucinations.
arXiv Detail & Related papers (2024-02-16T11:55:40Z) - INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection [39.52923659121416]
We propose to explore the dense semantic information retained within textbfINternal textbfStates for halluctextbfInation textbfDEtection.
A simple yet effective textbfEigenScore metric is proposed to better evaluate responses' self-consistency.
A test time feature clipping approach is explored to truncate extreme activations in the internal states.
arXiv Detail & Related papers (2024-02-06T06:23:12Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z) - Elastic Weight Removal for Faithful and Abstractive Dialogue Generation [61.40951756070646]
A dialogue system should generate responses that are faithful to the knowledge contained in relevant documents.
Many models generate hallucinated responses instead that contradict it or contain unverifiable information.
We show that our method can be extended to simultaneously discourage hallucinations and extractive responses.
arXiv Detail & Related papers (2023-03-30T17:40:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.