論文の概要: Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
- arxiv url: http://arxiv.org/abs/2505.07614v2
- Date: Mon, 09 Jun 2025 14:01:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.066856
- Title: Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
- Title(参考訳): ビザンツ攻撃と総合防衛戦略の試行と信頼
- Authors: Gleb Molodtsov, Daniil Medyakov, Sergey Skorik, Nikolas Khachaturov, Shahane Tigranyan, Vladimir Aletov, Aram Avetisyan, Martin Takáč, Aleksandr Beznosikov,
- Abstract要約: 本稿では、侵害されたクライアントが世界収束を遅らせるために敵の更新を注入する、ビザンチン攻撃という特定の脅威に対処する。
信頼スコアの概念とトライアル関数の方法論を組み合わせることで、アウトレイラを動的にフィルタリングする。
提案手法は,Byzantineノードが多数を占める場合でも機能を実現するため,従来のアプローチの限界に対処する。
- 参考スコア(独自算出の注目度): 37.73859687331454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in machine learning have improved performance while also increasing computational demands. While federated and distributed setups address these issues, their structure is vulnerable to malicious influences. In this paper, we address a specific threat, Byzantine attacks, where compromised clients inject adversarial updates to derail global convergence. We combine the trust scores concept with trial function methodology to dynamically filter outliers. Our methods address the critical limitations of previous approaches, allowing functionality even when Byzantine nodes are in the majority. Moreover, our algorithms adapt to widely used scaled methods like Adam and RMSProp, as well as practical scenarios, including local training and partial participation. We validate the robustness of our methods by conducting extensive experiments on both synthetic and real ECG data collected from medical institutions. Furthermore, we provide a broad theoretical analysis of our algorithms and their extensions to aforementioned practical setups. The convergence guarantees of our methods are comparable to those of classical algorithms developed without Byzantine interference.
- Abstract(参考訳): 機械学習の最近の進歩は、計算要求を増大させながら、性能を改善している。
統合された分散セットアップはこれらの問題に対処するが、その構造は悪意のある影響に対して脆弱である。
本稿では、侵害されたクライアントが世界収束を遅らせるために敵の更新を注入する、ビザンチン攻撃という特定の脅威に対処する。
信頼スコアの概念とトライアル関数の方法論を組み合わせることで、アウトレイラを動的にフィルタリングする。
提案手法は,Byzantineノードが多数を占める場合でも機能を実現するため,従来のアプローチの限界に対処する。
さらに,アルゴリズムはAdamやRMSPropといった大規模手法や,局所的なトレーニングや部分的な参加といった実践的なシナリオにも適応する。
医療機関から収集した人工心電図データと実心電図データの両方について広範な実験を行うことにより,本手法の堅牢性を検証する。
さらに,このアルゴリズムと,前述の実践的な設定への拡張について,幅広い理論的解析を行った。
我々の手法の収束保証は、ビザンチン干渉なしで開発された古典的アルゴリズムに匹敵するものである。
関連論文リスト
- Byzantine-Resilient Over-the-Air Federated Learning under Zero-Trust Architecture [68.83934802584899]
我々は,セキュアな適応クラスタリング(FedSAC)を用いたフェデレーション学習(Federated Learning)と呼ばれる,無線通信のための新しいビザンチン・ロバストFLパラダイムを提案する。
FedSACは、デバイスの一部をゼロ信頼アーキテクチャ(ZTA)ベースのビザンティン識別と適応デバイスクラスタリングによる攻撃から保護することを目的としている。
実験精度と収束率の両面から,提案手法よりもFedSACの方が優れていることを示す。
論文 参考訳(メタデータ) (2025-03-24T01:56:30Z) - Byzantine-Robust and Communication-Efficient Distributed Learning via Compressed Momentum Filtering [17.446431849022346]
分散学習は、プライベートデータサイロにわたる大規模機械学習モデルをトレーニングするための標準アプローチとなっている。
堅牢性とコミュニケーションの保存に関する重要な課題に直面している。
本稿では,ビザンチン・ロバスト・コミュニケーション効率の高い分散学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-13T08:53:10Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
大規模言語モデル(LLM)は、安全ガードレールをバイパスできる敵攻撃に対して脆弱である。
本稿では,2つの損失からなる高速対向訓練アルゴリズム(C-AdvUL)を提案する。
C-AdvIPOは、対向的に堅牢なアライメントのためのユーティリティデータを必要としない、対向型のIPOである。
論文 参考訳(メタデータ) (2024-05-24T14:20:09Z) - READ: Improving Relation Extraction from an ADversarial Perspective [33.44949503459933]
関係抽出(RE)に特化して設計された対角的学習法を提案する。
提案手法では,シーケンスレベルの摂動とトークンレベルの摂動の両方をサンプルに導入し,個別の摂動語彙を用いてエンティティとコンテキストの摂動の探索を改善する。
論文 参考訳(メタデータ) (2024-04-02T16:42:44Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
本稿では,複数のエージェントが環境を探索し,その経験を中央サーバを通じて伝達する分散強化学習環境について考察する。
エージェントの$alpha$-fractionは敵対的であり、任意の偽情報を報告することができる。
我々は、これらの対立エージェントの存在下で、マルコフ決定プロセスの根底にある準最適政策を特定することを模索する。
論文 参考訳(メタデータ) (2022-06-01T00:44:53Z) - A Unified Wasserstein Distributional Robustness Framework for
Adversarial Training [24.411703133156394]
本稿では、ワッサーシュタイン分布のロバスト性と現在の最先端AT法を結合する統一的なフレームワークを提案する。
我々は、新しいワッサースタインコスト関数と、新しい一連のリスク関数を導入し、標準ATメソッドが我々のフレームワークのそれに対応する特別なケースであることを示す。
この接続は、既存のAT手法の直感的な緩和と一般化をもたらし、分散ロバスト性ATベースのアルゴリズムの新たなファミリーの開発を促進する。
論文 参考訳(メタデータ) (2022-02-27T19:40:29Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
本稿では,クラスタリングアルゴリズムのロバスト性をテストするために,ブラックボックス対逆攻撃法を提案する。
我々の攻撃は、SVM、ランダムフォレスト、ニューラルネットワークなどの教師付きアルゴリズムに対しても転送可能であることを示す。
論文 参考訳(メタデータ) (2020-09-09T18:19:31Z) - Opportunities and Challenges in Deep Learning Adversarial Robustness: A
Survey [1.8782750537161614]
本稿では,機械学習アルゴリズムの安全性を保証するために,強靭に訓練されたアルゴリズムを実装するための戦略について検討する。
我々は、敵の攻撃と防衛を分類し、ロバスト最適化問題をmin-max設定で定式化し、それを3つのサブカテゴリに分類する。
論文 参考訳(メタデータ) (2020-07-01T21:00:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。