Higher-Order Convolution Improves Neural Predictivity in the Retina
- URL: http://arxiv.org/abs/2505.07620v1
- Date: Mon, 12 May 2025 14:43:32 GMT
- Title: Higher-Order Convolution Improves Neural Predictivity in the Retina
- Authors: Simone Azeglio, Victor Calbiague Garcia, Guilhem Glaziou, Peter Neri, Olivier Marre, Ulisse Ferrari,
- Abstract summary: We present a novel approach to neural response prediction that incorporates higher-order operations directly within convolutional neural networks (CNNs)<n>Our model extends traditional 3D CNNs by embedding higher-order operations within the convolutional operator itself.<n>We evaluate our approach on two distinct datasets: salamander retinal ganglion cell (RGC) responses to natural scenes, and a new dataset of mouse RGC responses to controlled geometric transformations.
- Score: 0.7916635054977068
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a novel approach to neural response prediction that incorporates higher-order operations directly within convolutional neural networks (CNNs). Our model extends traditional 3D CNNs by embedding higher-order operations within the convolutional operator itself, enabling direct modeling of multiplicative interactions between neighboring pixels across space and time. Our model increases the representational power of CNNs without increasing their depth, therefore addressing the architectural disparity between deep artificial networks and the relatively shallow processing hierarchy of biological visual systems. We evaluate our approach on two distinct datasets: salamander retinal ganglion cell (RGC) responses to natural scenes, and a new dataset of mouse RGC responses to controlled geometric transformations. Our higher-order CNN (HoCNN) achieves superior performance while requiring only half the training data compared to standard architectures, demonstrating correlation coefficients up to 0.75 with neural responses (against 0.80$\pm$0.02 retinal reliability). When integrated into state-of-the-art architectures, our approach consistently improves performance across different species and stimulus conditions. Analysis of the learned representations reveals that our network naturally encodes fundamental geometric transformations, particularly scaling parameters that characterize object expansion and contraction. This capability is especially relevant for specific cell types, such as transient OFF-alpha and transient ON cells, which are known to detect looming objects and object motion respectively, and where our model shows marked improvement in response prediction. The correlation coefficients for scaling parameters are more than twice as high in HoCNN (0.72) compared to baseline models (0.32).
Related papers
- Time Elastic Neural Networks [2.1756081703276]
We introduce and detail an atypical neural network architecture, called time elastic neural network (teNN)
The novelty compared to classical neural network architecture is that it explicitly incorporates time warping ability.
We demonstrate that, during the training process, the teNN succeeds in reducing the number of neurons required within each cell.
arXiv Detail & Related papers (2024-05-27T09:01:30Z) - On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
We study how the topology of feature embedding space changes as it passes through the layers of a well-trained deep neural network (DNN) through Betti numbers.
We demonstrate that as depth increases, a topologically complicated dataset is transformed into a simple one, resulting in Betti numbers attaining their lowest possible value.
arXiv Detail & Related papers (2023-11-08T10:45:12Z) - Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
We propose a neural network weight encoding method for network property prediction.<n>Our approach is capable of encoding neural networks in a model zoo of mixed architecture.<n>We introduce two new tasks for neural network property prediction: cross-dataset and cross-architecture.
arXiv Detail & Related papers (2023-05-26T04:34:28Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Improving Neural Predictivity in the Visual Cortex with Gated Recurrent
Connections [0.0]
We aim to shift the focus on architectures that take into account lateral recurrent connections, a ubiquitous feature of the ventral visual stream, to devise adaptive receptive fields.
In order to increase the robustness of our approach and the biological fidelity of the activations, we employ specific data augmentation techniques.
arXiv Detail & Related papers (2022-03-22T17:27:22Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Differentiable Neural Architecture Learning for Efficient Neural Network
Design [31.23038136038325]
We introduce a novel emph architecture parameterisation based on scaled sigmoid function.
We then propose a general emphiable Neural Architecture Learning (DNAL) method to optimize the neural architecture without the need to evaluate candidate neural networks.
arXiv Detail & Related papers (2021-03-03T02:03:08Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.