Transfer Learning Across Fixed-Income Product Classes
- URL: http://arxiv.org/abs/2505.07676v1
- Date: Mon, 12 May 2025 15:43:29 GMT
- Title: Transfer Learning Across Fixed-Income Product Classes
- Authors: Nicolas Camenzind, Damir Filipovic,
- Abstract summary: We propose a framework for transfer learning of discount curves across different fixed-income product classes.<n>Motivated by challenges in estimating discount curves from sparse or noisy data, we extend kernel ridge regression (KR) to a vector-valued setting.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a framework for transfer learning of discount curves across different fixed-income product classes. Motivated by challenges in estimating discount curves from sparse or noisy data, we extend kernel ridge regression (KR) to a vector-valued setting, formulating a convex optimization problem in a vector-valued reproducing kernel Hilbert space (RKHS). Each component of the solution corresponds to the discount curve implied by a specific product class. We introduce an additional regularization term motivated by economic principles, promoting smoothness of spread curves between product classes, and show that it leads to a valid separable kernel structure. A main theoretical contribution is a decomposition of the vector-valued RKHS norm induced by separable kernels. We further provide a Gaussian process interpretation of vector-valued KR, enabling quantification of estimation uncertainty. Illustrative examples demonstrate that transfer learning significantly improves extrapolation performance and tightens confidence intervals compared to single-curve estimation.
Related papers
- Generalization Bound of Gradient Flow through Training Trajectory and Data-dependent Kernel [55.82768375605861]
We establish a generalization bound for gradient flow that aligns with the classical Rademacher complexity for kernel methods.<n>Unlike static kernels such as NTK, the LPK captures the entire training trajectory, adapting to both data and optimization dynamics.
arXiv Detail & Related papers (2025-06-12T23:17:09Z) - Model-Robust and Adaptive-Optimal Transfer Learning for Tackling Concept Shifts in Nonparametric Regression [7.243632426715939]
We present a transfer learning procedure that is robust against model misspecification while adaptively attaining optimality.<n>We derive the adaptive convergence rates of the excess risk for specifying Gaussian kernels in a prevalent class of hypothesis transfer learning algorithms.
arXiv Detail & Related papers (2025-01-18T20:33:37Z) - Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning [33.34053480377887]
This paper enhances kernel ridgeless regression with Locally-Adaptive-Bandwidths (LAB) RBF kernels.
For the first time, we demonstrate that functions learned from LAB RBF kernels belong to an integral space of Reproducible Kernel Hilbert Spaces (RKHSs)
arXiv Detail & Related papers (2024-06-03T15:28:12Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Contrastive Learning Can Find An Optimal Basis For Approximately
View-Invariant Functions [18.440569330385323]
We show that multiple contrastive learning methods can be reinterpreted as learning kernel functions that approximate a fixed positive-pair kernel.
We prove that a simple representation obtained by combining this kernel with PCA provably minimizes the worst-case approximation error of linear predictors.
arXiv Detail & Related papers (2022-10-04T20:02:52Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
We show that a phenomenon can be precisely characterized in the context of kernel methods.
We consider the minimization of a quadratic objective in a separable Hilbert space, and show that with early stopping, the choice of learning rate influences the spectral decomposition of the obtained solution.
arXiv Detail & Related papers (2022-02-28T13:01:04Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Adaptive joint distribution learning [0.0]
We develop a new framework for estimating joint probability distributions using tensor product reproducing kernel Hilbert spaces (RKHS)
Our framework accommodates a low-dimensional, normalized and positive model of a Radon--Nikodym derivative, which we estimate from sample sizes of up to several millions.
arXiv Detail & Related papers (2021-10-10T15:51:01Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves [26.880628841819004]
We prove uniform consistency with improved finite sample rates via original analysis of generalized kernel ridge regression.
We extend our main results to counterfactual distributions and to causal functions identified by front and back door criteria.
arXiv Detail & Related papers (2020-10-10T00:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.