4TaStiC: Time and trend traveling time series clustering for classifying long-term type 2 diabetes patients
- URL: http://arxiv.org/abs/2505.07702v1
- Date: Mon, 12 May 2025 16:10:32 GMT
- Title: 4TaStiC: Time and trend traveling time series clustering for classifying long-term type 2 diabetes patients
- Authors: Onthada Preedasawakul, Nathakhun Wiroonsri,
- Abstract summary: We introduce a new clustering algorithm called Time and Trend Traveling Time Series Clustering (4TaStiC)<n>Each group of patients exhibits clear characteristics that will benefit doctors in making efficient clinical decisions.<n>The proposed algorithm can be applied to contexts outside the medical field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diabetes is one of the most prevalent diseases worldwide, characterized by persistently high blood sugar levels, capable of damaging various internal organs and systems. Diabetes patients require routine check-ups, resulting in a time series of laboratory records, such as hemoglobin A1c, which reflects each patient's health behavior over time and informs their doctor's recommendations. Clustering patients into groups based on their entire time series data assists doctors in making recommendations and choosing treatments without the need to review all records. However, time series clustering of this type of dataset introduces some challenges; patients visit their doctors at different time points, making it difficult to capture and match trends, peaks, and patterns. Additionally, two aspects must be considered: differences in the levels of laboratory results and differences in trends and patterns. To address these challenges, we introduce a new clustering algorithm called Time and Trend Traveling Time Series Clustering (4TaStiC), using a base dissimilarity measure combined with Euclidean and Pearson correlation metrics. We evaluated this algorithm on artificial datasets, comparing its performance with that of seven existing methods. The results show that 4TaStiC outperformed the other methods on the targeted datasets. Finally, we applied 4TaStiC to cluster a cohort of 1,989 type 2 diabetes patients at Siriraj Hospital. Each group of patients exhibits clear characteristics that will benefit doctors in making efficient clinical decisions. Furthermore, the proposed algorithm can be applied to contexts outside the medical field.
Related papers
- Interpretable AI-driven Guidelines for Type 2 Diabetes Treatment from Observational Data [0.0]
We create precise, structured, data-backed guidelines for type 2 diabetes treatment progression.<n>We train AI-backed tree-based models to prescribe treatment changes.<n>In this process, we prioritize stepping up to a more aggressive treatment before considering less aggressive options.
arXiv Detail & Related papers (2025-04-16T18:29:45Z) - Identifying Subgroups of ICU Patients Using End-to-End Multivariate
Time-Series Clustering Algorithm Based on Real-World Vital Signs Data [1.6160887070677055]
This study employed the MIMIC-IV database as data source to investigate the use of dynamic, high-frequency, multivariate time-series vital signs data.
Various clustering algorithms were compared, and an end-to-end multivariate time series clustering system called Time2Feat, combined with K-Means, was chosen as the most effective method to cluster patients in the ICU.
arXiv Detail & Related papers (2023-06-03T14:25:15Z) - T-Phenotype: Discovering Phenotypes of Predictive Temporal Patterns in
Disease Progression [82.85825388788567]
We develop a novel temporal clustering method, T-Phenotype, to discover phenotypes of predictive temporal patterns from labeled time-series data.
We show that T-Phenotype achieves the best phenotype discovery performance over all the evaluated baselines.
arXiv Detail & Related papers (2023-02-24T13:30:35Z) - Longitudinal patient stratification of electronic health records with
flexible adjustment for clinical outcomes [0.7874708385247353]
We develop a recurrent neural network autoencoder to cluster EHR data using reconstruction, outcome, and clustering losses.
We demonstrate the model performance on $29,229$ diabetes patients, showing it finds clusters of patients with both different trajectories and different outcomes.
arXiv Detail & Related papers (2021-11-11T11:21:39Z) - Deep Semi-Supervised Embedded Clustering (DSEC) for Stratification of
Heart Failure Patients [50.48904066814385]
In this work we apply deep semi-supervised embedded clustering to determine data-driven patient subgroups of heart failure.
We find clinically relevant clusters from an embedded space derived from heterogeneous data.
The proposed algorithm can potentially find new undiagnosed subgroups of patients that have different outcomes.
arXiv Detail & Related papers (2020-12-24T12:56:46Z) - Phenotyping Clusters of Patient Trajectories suffering from Chronic
Complex Disease [3.1564542805009332]
We evaluate three different clustering models on a large hospital dataset of vital-sign observations from patients suffering from COPD.
We propose novel modifications to deal with unevenly sampled time-series data and unbalanced class distribution to improve phenotype separation.
arXiv Detail & Related papers (2020-11-17T01:18:33Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
We develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest.
Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-06-15T20:48:43Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.