Interpretable AI-driven Guidelines for Type 2 Diabetes Treatment from Observational Data
- URL: http://arxiv.org/abs/2504.12417v1
- Date: Wed, 16 Apr 2025 18:29:45 GMT
- Title: Interpretable AI-driven Guidelines for Type 2 Diabetes Treatment from Observational Data
- Authors: Dewang Kumar Agarwal, Dimitris J. Bertsimas,
- Abstract summary: We create precise, structured, data-backed guidelines for type 2 diabetes treatment progression.<n>We train AI-backed tree-based models to prescribe treatment changes.<n>In this process, we prioritize stepping up to a more aggressive treatment before considering less aggressive options.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Objective: Create precise, structured, data-backed guidelines for type 2 diabetes treatment progression, suitable for clinical adoption. Research Design and Methods: Our training cohort was composed of patient (with type 2 diabetes) visits from Boston Medical Center (BMC) from 1998 to 2014. We divide visits into 4 groups based on the patient's treatment regimen before the visit, and further divide them into subgroups based on the recommended treatment during the visit. Since each subgroup has observational data, which has confounding bias (sicker patients are prescribed more aggressive treatments), we used machine learning and optimization to remove some datapoints so that the remaining data resembles a randomized trial. On each subgroup, we train AI-backed tree-based models to prescribe treatment changes. Once we train these tree models, we manually combine the models for every group to create an end-to-end prescription pipeline for all patients in that group. In this process, we prioritize stepping up to a more aggressive treatment before considering less aggressive options. We tested this pipeline on unseen data from BMC, and an external dataset from Hartford healthcare (type 2 diabetes patient visits from January 2020 to May 2024). Results: The median HbA1c reduction achieved by our pipelines is 0.26% more than what the doctors achieved on the unseen BMC patients. For the Hartford cohort, our pipelines were better by 0.13%. Conclusions: This precise, interpretable, and efficient AI-backed approach to treatment progression in type 2 diabetes is predicted to outperform the current practice and can be deployed to improve patient outcomes.
Related papers
- Privacy Preserved Blood Glucose Level Cross-Prediction: An Asynchronous Decentralized Federated Learning Approach [13.363740869325646]
Newly diagnosed Type 1 Diabetes (T1D) patients often struggle to obtain effective Blood Glucose (BG) prediction models.
We propose "GluADFL", blood Glucose prediction by Asynchronous Decentralized Federated Learning.
arXiv Detail & Related papers (2024-06-21T17:57:39Z) - Robust Learning for Optimal Dynamic Treatment Regimes with Observational Data [0.0]
We study the statistical learning of optimal dynamic treatment regimes (DTRs) that determine the optimal treatment assignment for each individual at each stage based on their evolving history.
arXiv Detail & Related papers (2024-03-30T02:33:39Z) - Nurse-in-the-Loop Artificial Intelligence for Precision Management of
Type 2 Diabetes in a Clinical Trial Utilizing Transfer-Learned Predictive
Digital Twin [5.521385406191426]
The study developed an online nurse-in-the-loop predictive control (ONLC) model that utilizes a predictive digital twin (PDT)
The PDT was trained on participants self-monitoring data (weight, food logs, physical activity, glucose) from the first three months.
The ONLC provided the intervention group with individualized feedback and recommendations via text messages.
arXiv Detail & Related papers (2024-01-05T06:38:50Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
We propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples.
We train a Meta-GNN based classifier that learns a global model from a set of training patients.
We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
arXiv Detail & Related papers (2022-11-01T14:12:58Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
Pre-training has shown success in different areas of machine learning, such as Computer Vision (CV), Natural Language Processing (NLP) and medical imaging.
In this paper, we apply unsupervised pre-training to heterogeneous, multi-modal EHR data for patient outcome prediction.
We find that our proposed graph based pre-training method helps in modeling the data at a population level.
arXiv Detail & Related papers (2022-03-23T17:59:45Z) - An Ensemble Approach for Patient Prognosis of Head and Neck Tumor Using
Multimodal Data [0.0]
We propose a multimodal network that ensembles deep multi-task logistic regression (MTLR), Cox proportional hazard (CoxPH) and CNN models to predict prognostic outcomes for patients with head and neck tumors.
Our proposed ensemble solution achieves a C-index of 0.72 on The HECKTOR test set that saved us the first place in prognosis task of the HECKTOR challenge.
arXiv Detail & Related papers (2022-02-25T07:50:59Z) - Multi-task fusion for improving mammography screening data
classification [3.7683182861690843]
We propose a pipeline approach, where we first train a set of individual, task-specific models.
We then investigate the fusion thereof, which is in contrast to the standard model ensembling strategy.
Our fusion approaches improve AUC scores significantly by up to 0.04 compared to standard model ensembling.
arXiv Detail & Related papers (2021-12-01T13:56:27Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Predicting special care during the COVID-19 pandemic: A machine learning
approach [0.0]
We propose an analytical approach based on statistics and machine learning to predict whether patients are going to require special care.
We also predict the number of days the patients will stay under such care.
The analytical approach can be used in other diseases and can help the planning hospital capacity.
arXiv Detail & Related papers (2020-11-06T00:18:27Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
arXiv Detail & Related papers (2020-07-31T14:34:35Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions to an individual's initial features and to intermediate outcomes and features at each subsequent stage.
We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear.
arXiv Detail & Related papers (2020-05-06T13:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.