Gameplay Highlights Generation
- URL: http://arxiv.org/abs/2505.07721v1
- Date: Mon, 12 May 2025 16:28:22 GMT
- Title: Gameplay Highlights Generation
- Authors: Vignesh Edithal, Le Zhang, Ilia Blank, Imran Junejo,
- Abstract summary: This work enables gamers to share their gaming experience on social media by automatically generating eye-catching highlight reels from their gameplay session.<n>We develop an in-house gameplay event detection dataset containing interesting events annotated by humans using VIA video annotator.<n>We finetuned a multimodal general purpose video understanding model such as X-CLIP using our dataset which generalizes across multiple games in a genre without per game engineering.
- Score: 3.019500891118183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we enable gamers to share their gaming experience on social media by automatically generating eye-catching highlight reels from their gameplay session Our automation will save time for gamers while increasing audience engagement. We approach the highlight generation problem by first identifying intervals in the video where interesting events occur and then concatenate them. We developed an in-house gameplay event detection dataset containing interesting events annotated by humans using VIA video annotator. Traditional techniques for highlight detection such as game engine integration requires expensive collaboration with game developers. OCR techniques which detect patches of specific images or texts require expensive per game engineering and may not generalize across game UI and different language. We finetuned a multimodal general purpose video understanding model such as X-CLIP using our dataset which generalizes across multiple games in a genre without per game engineering. Prompt engineering was performed to improve the classification performance of this multimodal model. Our evaluation showed that such a finetuned model can detect interesting events in first person shooting games from unseen gameplay footage with more than 90% accuracy. Moreover, our model performed significantly better on low resource games (small dataset) when trained along with high resource games, showing signs of transfer learning. To make the model production ready, we used ONNX libraries to enable cross platform inference. These libraries also provide post training quantization tools to reduce model size and inference time for deployment. ONNX runtime libraries with DirectML backend were used to perform efficient inference on Windows OS. We show that natural language supervision in the X-CLIP model leads to data efficient and highly performant video recognition models.
Related papers
- Game-invariant Features Through Contrastive and Domain-adversarial Learning [0.0]
Foundational game-image encoders often overfit to game-specific visual styles.<n>We present a method that combines contrastive learning and domain-adversarial training to learn game-invariant visual features.
arXiv Detail & Related papers (2025-05-22T22:45:51Z) - GameFactory: Creating New Games with Generative Interactive Videos [32.98135338530966]
Generative videos have the potential to revolutionize game development by autonomously creating new content.<n>We present GameFactory, a framework for action-controlled scene-generalizable game video generation.<n> Experimental results demonstrate that GameFactory effectively generates open-domain action-controllable game videos.
arXiv Detail & Related papers (2025-01-14T18:57:21Z) - GameGen-X: Interactive Open-world Game Video Generation [10.001128258269675]
We introduce GameGen-X, the first diffusion transformer model specifically designed for both generating and interactively controlling open-world game videos.<n>It simulates an array of game engine features, such as innovative characters, dynamic environments, complex actions, and diverse events.<n>It provides interactive controllability, predicting and future altering content based on the current clip, thus allowing for gameplay simulation.
arXiv Detail & Related papers (2024-11-01T17:59:17Z) - X-MIC: Cross-Modal Instance Conditioning for Egocentric Action Generalization [56.75782714530429]
We propose a cross-modal adaptation framework, which we call X-MIC.
Our pipeline learns to align frozen text embeddings to each egocentric video directly in the shared embedding space.
This results in an enhanced alignment of text embeddings to each egocentric video, leading to a significant improvement in cross-dataset generalization.
arXiv Detail & Related papers (2024-03-28T19:45:35Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
We present a Promptable Game Model (PGM) for neural video game simulators.
It allows a user to play the game by prompting it with high- and low-level action sequences.
Most captivatingly, our PGM unlocks the director's mode, where the game is played by specifying goals for the agents in the form of a prompt.
Our method significantly outperforms existing neural video game simulators in terms of rendering quality and unlocks applications beyond the capabilities of the current state of the art.
arXiv Detail & Related papers (2023-03-23T17:43:17Z) - Knowledge Transfer For On-Device Speech Emotion Recognition with Neural
Structured Learning [19.220263739291685]
Speech emotion recognition (SER) has been a popular research topic in human-computer interaction (HCI)
We propose a neural structured learning (NSL) framework through building synthesized graphs.
Our experiments demonstrate that training a lightweight SER model on the target dataset with speech samples and graphs can not only produce small SER models, but also enhance the model performance.
arXiv Detail & Related papers (2022-10-26T18:38:42Z) - Frozen CLIP Models are Efficient Video Learners [86.73871814176795]
Video recognition has been dominated by the end-to-end learning paradigm.
Recent advances in Contrastive Vision-Language Pre-training pave the way for a new route for visual recognition tasks.
We present Efficient Video Learning -- an efficient framework for directly training high-quality video recognition models.
arXiv Detail & Related papers (2022-08-06T17:38:25Z) - Multi-Game Decision Transformers [49.257185338595434]
We show that a single transformer-based model can play a suite of up to 46 Atari games simultaneously at close-to-human performance.
We compare several approaches in this multi-game setting, such as online and offline RL methods and behavioral cloning.
We find that our Multi-Game Decision Transformer models offer the best scalability and performance.
arXiv Detail & Related papers (2022-05-30T16:55:38Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z) - Neural Game Engine: Accurate learning of generalizable forward models
from pixels [0.0]
This paper introduces the Neural Game Engine, as a way to learn models directly from pixels.
Results on 10 deterministic General Video Game AI games demonstrate competitive performance.
arXiv Detail & Related papers (2020-03-23T20:04:55Z) - Model-Based Reinforcement Learning for Atari [89.3039240303797]
We show how video prediction models can enable agents to solve Atari games with fewer interactions than model-free methods.
Our experiments evaluate SimPLe on a range of Atari games in low data regime of 100k interactions between the agent and the environment.
arXiv Detail & Related papers (2019-03-01T15:40:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.