Step1X-3D: Towards High-Fidelity and Controllable Generation of Textured 3D Assets
- URL: http://arxiv.org/abs/2505.07747v1
- Date: Mon, 12 May 2025 16:56:30 GMT
- Title: Step1X-3D: Towards High-Fidelity and Controllable Generation of Textured 3D Assets
- Authors: Weiyu Li, Xuanyang Zhang, Zheng Sun, Di Qi, Hao Li, Wei Cheng, Weiwei Cai, Shihao Wu, Jiarui Liu, Zihao Wang, Xiao Chen, Feipeng Tian, Jianxiong Pan, Zeming Li, Gang Yu, Xiangyu Zhang, Daxin Jiang, Ping Tan,
- Abstract summary: Step1X-3D is an open framework addressing challenges such as data scarcity, algorithmic limitations, and ecosystem fragmentation.<n>We present a two-stage 3D-native architecture combining a hybrid VAE-DiT geometry generator with a diffusion-based texture synthesis module.<n> Benchmark results demonstrate state-of-the-art performance that exceeds existing open-source methods.
- Score: 90.99212668875971
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While generative artificial intelligence has advanced significantly across text, image, audio, and video domains, 3D generation remains comparatively underdeveloped due to fundamental challenges such as data scarcity, algorithmic limitations, and ecosystem fragmentation. To this end, we present Step1X-3D, an open framework addressing these challenges through: (1) a rigorous data curation pipeline processing >5M assets to create a 2M high-quality dataset with standardized geometric and textural properties; (2) a two-stage 3D-native architecture combining a hybrid VAE-DiT geometry generator with an diffusion-based texture synthesis module; and (3) the full open-source release of models, training code, and adaptation modules. For geometry generation, the hybrid VAE-DiT component produces TSDF representations by employing perceiver-based latent encoding with sharp edge sampling for detail preservation. The diffusion-based texture synthesis module then ensures cross-view consistency through geometric conditioning and latent-space synchronization. Benchmark results demonstrate state-of-the-art performance that exceeds existing open-source methods, while also achieving competitive quality with proprietary solutions. Notably, the framework uniquely bridges the 2D and 3D generation paradigms by supporting direct transfer of 2D control techniques~(e.g., LoRA) to 3D synthesis. By simultaneously advancing data quality, algorithmic fidelity, and reproducibility, Step1X-3D aims to establish new standards for open research in controllable 3D asset generation.
Related papers
- End-to-End Fine-Tuning of 3D Texture Generation using Differentiable Rewards [8.953379216683732]
We propose an end-to-end differentiable, reinforcement-learning-free framework that embeds human feedback, expressed as differentiable reward functions, directly into the 3D texture pipeline.<n>By back-propagating preference signals through both geometric and appearance modules, our method generates textures that respect the 3D geometry structure and align with desired criteria.
arXiv Detail & Related papers (2025-06-23T06:24:12Z) - Advancing high-fidelity 3D and Texture Generation with 2.5D latents [21.33523572280285]
We propose a novel framework for joint generation of 3D geometry and texture.<n>Specifically, we focus in generate a versatile 2.5D representations that can be seamlessly transformed between 2D and 3D.<n>Our model not only excels in generating high-quality 3D objects with coherent structure and color from text and image inputs but also significantly outperforms existing methods in geometry-conditioned texture generation.
arXiv Detail & Related papers (2025-05-27T11:35:35Z) - Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation [56.862552362223425]
This report presents a comprehensive framework for generating high-quality 3D shapes and textures from diverse input prompts.<n>The framework consists of 3D shape generation and texture generation.<n>This report details the system architecture, experimental results, and potential future directions to improve and expand the framework.
arXiv Detail & Related papers (2025-02-20T04:22:30Z) - TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models [69.0220314849478]
TripoSG is a new streamlined shape diffusion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images.<n>The resulting 3D shapes exhibit enhanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input images.<n>To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
arXiv Detail & Related papers (2025-02-10T16:07:54Z) - GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency [50.11520458252128]
Existing 3D affordance learning methods struggle with generalization and robustness due to limited annotated data.<n>We propose GEAL, a novel framework designed to enhance the generalization and robustness of 3D affordance learning by leveraging large-scale pre-trained 2D models.<n>GEAL consistently outperforms existing methods across seen and novel object categories, as well as corrupted data.
arXiv Detail & Related papers (2024-12-12T17:59:03Z) - 3DTopia-XL: Scaling High-quality 3D Asset Generation via Primitive Diffusion [86.25111098482537]
We introduce 3DTopia-XL, a scalable native 3D generative model designed to overcome limitations of existing methods.<n>3DTopia-XL leverages a novel primitive-based 3D representation, PrimX, which encodes detailed shape, albedo, and material field into a compact tensorial format.<n>On top of the novel representation, we propose a generative framework based on Diffusion Transformer (DiT), which comprises 1) Primitive Patch Compression, 2) and Latent Primitive Diffusion.<n>We conduct extensive qualitative and quantitative experiments to demonstrate that 3DTopia-XL significantly outperforms existing methods in generating high-
arXiv Detail & Related papers (2024-09-19T17:59:06Z) - Retrieval-Augmented Score Distillation for Text-to-3D Generation [30.57225047257049]
We introduce novel framework for retrieval-based quality enhancement in text-to-3D generation.
We conduct extensive experiments to demonstrate that ReDream exhibits superior quality with increased geometric consistency.
arXiv Detail & Related papers (2024-02-05T12:50:30Z) - Text-to-3D Generation with Bidirectional Diffusion using both 2D and 3D
priors [16.93758384693786]
Bidirectional Diffusion(BiDiff) is a unified framework that incorporates both a 3D and a 2D diffusion process.
Our model achieves high-quality, diverse, and scalable 3D generation.
arXiv Detail & Related papers (2023-12-07T10:00:04Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.