論文の概要: Agent RL Scaling Law: Agent RL with Spontaneous Code Execution for Mathematical Problem Solving
- arxiv url: http://arxiv.org/abs/2505.07773v2
- Date: Wed, 14 May 2025 04:15:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 13:24:43.907802
- Title: Agent RL Scaling Law: Agent RL with Spontaneous Code Execution for Mathematical Problem Solving
- Title(参考訳): エージェントRLスケーリング法:数学的問題解決のための自発的コード実行を伴うエージェントRL
- Authors: Xinji Mai, Haotian Xu, Xing W, Weinong Wang, Yingying Zhang, Wenqiang Zhang,
- Abstract要約: 大規模言語モデル(LLM)は、正確で検証可能な計算を必要とする数学的推論タスクに苦慮することが多い。
結果に基づく報酬から強化学習(RL)がテキストベースの推論を強化する一方で、エージェントがコード実行のような外部ツールを活用するために自律的に学習する方法を理解することは依然として重要である。
- 参考スコア(独自算出の注目度): 27.133677615587555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) often struggle with mathematical reasoning tasks requiring precise, verifiable computation. While Reinforcement Learning (RL) from outcome-based rewards enhances text-based reasoning, understanding how agents autonomously learn to leverage external tools like code execution remains crucial. We investigate RL from outcome-based rewards for Tool-Integrated Reasoning, ZeroTIR, training base LLMs to spontaneously generate and execute Python code for mathematical problems without supervised tool-use examples. Our central contribution is we demonstrate that as RL training progresses, key metrics scale predictably. Specifically, we observe strong positive correlations where increased training steps lead to increases in the spontaneous code execution frequency, the average response length, and, critically, the final task accuracy. This suggests a quantifiable relationship between computational effort invested in training and the emergence of effective, tool-augmented reasoning strategies. We implement a robust framework featuring a decoupled code execution environment and validate our findings across standard RL algorithms and frameworks. Experiments show ZeroTIR significantly surpasses non-tool ZeroRL baselines on challenging math benchmarks. Our findings provide a foundational understanding of how autonomous tool use is acquired and scales within Agent RL, offering a reproducible benchmark for future studies. Code is released at \href{https://github.com/yyht/openrlhf_async_pipline}{https://github.com/yyht/openrlhf\_async\_pipline}.
- Abstract(参考訳): 大規模言語モデル(LLM)は、正確で検証可能な計算を必要とする数学的推論タスクに苦慮することが多い。
結果に基づく報酬から強化学習(RL)がテキストベースの推論を強化する一方で、エージェントがコード実行のような外部ツールを活用するために自律的に学習する方法を理解することは依然として重要である。
ツール・インテグレート・推論(ZeroTIR, LLM)のための結果に基づく報酬からRLを調査し, ツール・ユース・サンプルを指導することなく, 数学的問題に対してPythonコードを自発的に生成・実行するためのトレーニング・ベースLLMについて検討する。
私たちの中心的なコントリビューションは、RLトレーニングが進むにつれて、重要なメトリクスが予測可能にスケールできることを示しています。
具体的には、トレーニングステップの増加が、自発的コード実行頻度、平均応答長、そして重要な点として、最終タスク精度の増加につながる強い正の相関を観察する。
これは、トレーニングに投資した計算努力と、効果的なツール強化推論戦略の出現の間の定量的な関係を示唆している。
我々は、分離されたコード実行環境を特徴とする堅牢なフレームワークを実装し、標準のRLアルゴリズムとフレームワークで結果を検証する。
実験によると、ZeroTIRは、挑戦的な数学ベンチマークにおいて、非ツールのZeroRLベースラインを大幅に上回っている。
この結果から,Agent RL内での自律的ツール使用の獲得とスケールに関する基礎的な理解が得られ,今後の研究に再現可能なベンチマークが提供される。
コードは \href{https://github.com/yyht/openrlhf_async_pipline}{https://github.com/yyht/openrlhf\_async\_pipline} でリリースされる。
関連論文リスト
- ToolRL: Reward is All Tool Learning Needs [54.16305891389931]
大規模言語モデル(LLM)は、ツールの使用能力を得るために、しばしば監督された微調整(SFT)を行う。
近年の強化学習(RL)の進歩は、有望な推論と一般化能力を示している。
本稿では、RLパラダイムにおけるツール選択とアプリケーションタスクに対する報酬設計に関する最初の総合的研究について述べる。
論文 参考訳(メタデータ) (2025-04-16T21:45:32Z) - ReTool: Reinforcement Learning for Strategic Tool Use in LLMs [27.07998056454784]
ReToolは、ツール統合学習によるロングフォーム推論を強化する。
モデルは400のトレーニングステップで67%の精度を達成する。
注目すべきは、ReTool-32Bが72.5%の精度で設定できることだ。
論文 参考訳(メタデータ) (2025-04-15T18:10:22Z) - On the Emergence of Thinking in LLMs I: Searching for the Right Intuition [34.32871896067864]
自己学習による強化学習(RLSP)というポストトレーニングフレームワークを提案する。
RLSPは、推論プロセスの人間または合成的なデモンストレーションによる微調整、多種多様な効率的な推論行動を促進するための探索報酬信号の使用、報酬ハッキングを予防しながら正当性を確保するための結果検証器によるRLトレーニングの3段階を含む。
数学領域における実証的研究は、RLSPが推論を改善することを示している。
論文 参考訳(メタデータ) (2025-02-10T18:52:04Z) - Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards [49.7719149179179]
本稿では,PPOを用いた強化学習(RL)の実現可能性について検討する。
我々は,生成した出力の質を自動的に評価するために,明示的な報酬関数をプログラムできるプログラミングなどの形式言語で表されるタスクに焦点をあてる。
以上の結果から,2つの形式言語タスクに対する純粋なRLベースのトレーニングは困難であり,単純な算術タスクにおいても成功は限られていることがわかった。
論文 参考訳(メタデータ) (2024-10-22T15:59:58Z) - Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent [23.669599662214686]
HyperAgentは、RLにおける探索のためのハイパーモデルフレームワークに基づく強化学習(RL)アルゴリズムである。
我々はHyperAgentが大規模深部RLベンチマークで堅牢なパフォーマンスを提供することを示した。
問題の大きさで最適にスケールし、Atariスイートで顕著な効率向上を示すエピソードでディープシーのハードな探索問題を解決することができる。
論文 参考訳(メタデータ) (2024-02-05T07:07:30Z) - Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint [104.53687944498155]
強化学習(RL)は、大規模言語モデル(LLM)の訓練に広く用いられている。
本稿では,報酬モデルとして生成モデルを組み込んだRL法 RLMEC を提案する。
生成報酬モデルに基づいて、トレーニングのためのトークンレベルRL目標と、RLプロセスの安定化のための模倣ベース正規化を設計する。
論文 参考訳(メタデータ) (2024-01-11T17:58:41Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Contrastive Learning as Goal-Conditioned Reinforcement Learning [147.28638631734486]
強化学習(RL)では,優れた表現が与えられると,課題の解決が容易になる。
ディープRLはこのような優れた表現を自動的に取得する必要があるが、事前の作業では、エンドツーエンドの方法での学習表現が不安定であることが多い。
比較的)表現学習法は,RLアルゴリズムとして自己にキャスト可能であることを示す。
論文 参考訳(メタデータ) (2022-06-15T14:34:15Z) - ShinRL: A Library for Evaluating RL Algorithms from Theoretical and
Practical Perspectives [11.675763847424786]
本稿では、強化学習(RL)アルゴリズムを評価するためのオープンソースのライブラリであるShinRLを紹介する。
ShinRLは、RLアルゴリズムの振る舞いを掘り下げるためのメトリクスを計算することができるRL環境インターフェースを提供する。
ShinRLのこれらの2つの特徴を組み合わせることで、深層Q学習の振る舞いをより容易に分析できることを示す。
論文 参考訳(メタデータ) (2021-12-08T05:34:46Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。