CCL: Collaborative Curriculum Learning for Sparse-Reward Multi-Agent Reinforcement Learning via Co-evolutionary Task Evolution
- URL: http://arxiv.org/abs/2505.07854v1
- Date: Thu, 08 May 2025 04:23:47 GMT
- Title: CCL: Collaborative Curriculum Learning for Sparse-Reward Multi-Agent Reinforcement Learning via Co-evolutionary Task Evolution
- Authors: Yufei Lin, Chengwei Ye, Huanzhen Zhang, Kangsheng Wang, Linuo Xu, Shuyan Liu, Zeyu Zhang,
- Abstract summary: Sparse reward environments pose significant challenges in reinforcement learning, especially within multi-agent systems.<n>We propose Collaborative Multi-dimensional Course Learning (CCL), a novel curriculum learning framework that addresses this by (1) refining intermediate tasks for individual agents, (2) using a variational evolutionary algorithm to generate informative subtasks, and (3) co-evolving agents with their environment to enhance training stability.
- Score: 4.0873807995771
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse reward environments pose significant challenges in reinforcement learning, especially within multi-agent systems (MAS) where feedback is delayed and shared across agents, leading to suboptimal learning. We propose Collaborative Multi-dimensional Course Learning (CCL), a novel curriculum learning framework that addresses this by (1) refining intermediate tasks for individual agents, (2) using a variational evolutionary algorithm to generate informative subtasks, and (3) co-evolving agents with their environment to enhance training stability. Experiments on five cooperative tasks in the MPE and Hide-and-Seek environments show that CCL outperforms existing methods in sparse reward settings.
Related papers
- Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards [50.21528417884747]
We introduce Omni-Thinker, a unified reinforcement learning framework that enhances large language models (LLMs) performance across diverse tasks.<n>Our approach enables consistent optimization across task types and scales RL-based training to subjective domains.<n> Experimental results across four domains reveal that curriculum learning improves performance by 5.2% over joint training and 9.1% over model merging.
arXiv Detail & Related papers (2025-07-20T01:50:16Z) - Curriculum Learning With Counterfactual Group Relative Policy Advantage For Multi-Agent Reinforcement Learning [15.539607264374242]
Multi-agent reinforcement learning (MARL) has achieved strong performance in cooperative adversarial tasks.<n>We propose a dynamic curriculum learning framework that employs an self-adaptive difficulty adjustment mechanism.<n>Our method improves both training stability and final performance, achieving competitive results against state-of-the-art methods.
arXiv Detail & Related papers (2025-06-09T08:38:18Z) - Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration [63.90193684394165]
We introduce multi-agent cross-task experiential learning (MAEL), a novel framework that endows LLM-driven agents with explicit cross-task learning and experience accumulation.<n>During the experiential learning phase, we quantify the quality for each step in the task-solving workflow and store the resulting rewards.<n>During inference, agents retrieve high-reward, task-relevant experiences as few-shot examples to enhance the effectiveness of each reasoning step.
arXiv Detail & Related papers (2025-05-29T07:24:37Z) - Multi-Agent Collaboration via Evolving Orchestration [61.93162413517026]
Large language models (LLMs) have achieved remarkable results across diverse downstream tasks, but their monolithic nature restricts scalability and efficiency in complex problem-solving.<n>We propose a puppeteer-style paradigm for LLM-based multi-agent collaboration, where a central orchestrator dynamically directs agents in response to evolving task states.<n> Experiments on closed- and open-domain scenarios show that this method achieves superior performance with reduced computational costs.
arXiv Detail & Related papers (2025-05-26T07:02:17Z) - LERO: LLM-driven Evolutionary framework with Hybrid Rewards and Enhanced Observation for Multi-Agent Reinforcement Learning [4.343021413805699]
Multi-agent reinforcement learning (MARL) faces two critical bottlenecks distinct from single-agent RL.<n>We propose LERO, a framework integrating Large language models (LLMs) with evolutionary optimization to address these MARL-specific challenges.
arXiv Detail & Related papers (2025-03-25T06:28:42Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.<n>We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - Towards Skilled Population Curriculum for Multi-Agent Reinforcement
Learning [42.540853953923495]
We introduce a novel automatic curriculum learning framework, Skilled Population Curriculum (SPC), which adapts curriculum learning to multi-agent coordination.
Specifically, we endow the student with population-invariant communication and a hierarchical skill set, allowing it to learn cooperation and behavior skills from distinct tasks with varying numbers of agents.
We also analyze the inherent non-stationarity of this multi-agent automatic curriculum teaching problem and provide a corresponding regret bound.
arXiv Detail & Related papers (2023-02-07T12:30:52Z) - Non-local Policy Optimization via Diversity-regularized Collaborative
Exploration [45.997521480637836]
We propose a novel non-local policy optimization framework called Diversity-regularized Collaborative Exploration (DiCE)
DiCE utilizes a group of heterogeneous agents to explore the environment simultaneously and share the collected experiences.
We implement the framework in both on-policy and off-policy settings and the experimental results show that DiCE can achieve substantial improvement over the baselines.
arXiv Detail & Related papers (2020-06-14T03:31:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.