Curriculum Learning With Counterfactual Group Relative Policy Advantage For Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2506.07548v1
- Date: Mon, 09 Jun 2025 08:38:18 GMT
- Title: Curriculum Learning With Counterfactual Group Relative Policy Advantage For Multi-Agent Reinforcement Learning
- Authors: Weiqiang Jin, Hongyang Du, Guizhong Liu, Dong In Kim,
- Abstract summary: Multi-agent reinforcement learning (MARL) has achieved strong performance in cooperative adversarial tasks.<n>We propose a dynamic curriculum learning framework that employs an self-adaptive difficulty adjustment mechanism.<n>Our method improves both training stability and final performance, achieving competitive results against state-of-the-art methods.
- Score: 15.539607264374242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent reinforcement learning (MARL) has achieved strong performance in cooperative adversarial tasks. However, most existing methods typically train agents against fixed opponent strategies and rely on such meta-static difficulty conditions, which limits their adaptability to changing environments and often leads to suboptimal policies. Inspired by the success of curriculum learning (CL) in supervised tasks, we propose a dynamic CL framework for MARL that employs an self-adaptive difficulty adjustment mechanism. This mechanism continuously modulates opponent strength based on real-time agent training performance, allowing agents to progressively learn from easier to more challenging scenarios. However, the dynamic nature of CL introduces instability due to nonstationary environments and sparse global rewards. To address this challenge, we develop a Counterfactual Group Relative Policy Advantage (CGRPA), which is tightly coupled with the curriculum by providing intrinsic credit signals that reflect each agent's impact under evolving task demands. CGRPA constructs a counterfactual advantage function that isolates individual contributions within group behavior, facilitating more reliable policy updates throughout the curriculum. CGRPA evaluates each agent's contribution through constructing counterfactual action advantage function, providing intrinsic rewards that enhance credit assignment and stabilize learning under non-stationary conditions. Extensive experiments demonstrate that our method improves both training stability and final performance, achieving competitive results against state-of-the-art methods. The code is available at https://github.com/NICE-HKU/CL2MARL-SMAC.
Related papers
- Application of LLM Guided Reinforcement Learning in Formation Control with Collision Avoidance [1.1718316049475228]
Multi-Agent Systems (MAS) excel at accomplishing complex objectives through the collaborative efforts of individual agents.<n>In this paper, we introduce a novel framework that aims to overcome the challenge of designing an effective reward function.<n>By giving large language models (LLMs) on the prioritization of tasks, our framework generates reward functions that can be dynamically adjusted online.
arXiv Detail & Related papers (2025-07-22T09:26:00Z) - Action-Adaptive Continual Learning: Enabling Policy Generalization under Dynamic Action Spaces [16.07372335607339]
Continual Learning (CL) is a powerful tool that enables agents to learn a sequence of tasks.<n>Existing CL methods often assume that the agent's capabilities remain static within dynamic environments.<n>We propose an Action-Adaptive Continual Learning framework (AACL) to address this challenge.
arXiv Detail & Related papers (2025-06-06T03:07:30Z) - Fast Adaptation with Behavioral Foundation Models [82.34700481726951]
Unsupervised zero-shot reinforcement learning has emerged as a powerful paradigm for pretraining behavioral foundation models.<n>Despite promising results, zero-shot policies are often suboptimal due to errors induced by the unsupervised training process.<n>We propose fast adaptation strategies that search in the low-dimensional task-embedding space of the pre-trained BFM to rapidly improve the performance of its zero-shot policies.
arXiv Detail & Related papers (2025-04-10T16:14:17Z) - COMBO-Grasp: Learning Constraint-Based Manipulation for Bimanual Occluded Grasping [56.907940167333656]
Occluded robot grasping is where the desired grasp poses are kinematically infeasible due to environmental constraints such as surface collisions.<n>Traditional robot manipulation approaches struggle with the complexity of non-prehensile or bimanual strategies commonly used by humans.<n>We introduce Constraint-based Manipulation for Bimanual Occluded Grasping (COMBO-Grasp), a learning-based approach which leverages two coordinated policies.
arXiv Detail & Related papers (2025-02-12T01:31:01Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
arXiv Detail & Related papers (2024-06-12T08:48:06Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
We propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents.
We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement.
arXiv Detail & Related papers (2023-12-10T06:03:57Z) - Coherent Soft Imitation Learning [17.345411907902932]
Imitation learning methods seek to learn from an expert either through behavioral cloning (BC) of the policy or inverse reinforcement learning (IRL) of the reward.
This work derives an imitation method that captures the strengths of both BC and IRL.
arXiv Detail & Related papers (2023-05-25T21:54:22Z) - Towards Skilled Population Curriculum for Multi-Agent Reinforcement
Learning [42.540853953923495]
We introduce a novel automatic curriculum learning framework, Skilled Population Curriculum (SPC), which adapts curriculum learning to multi-agent coordination.
Specifically, we endow the student with population-invariant communication and a hierarchical skill set, allowing it to learn cooperation and behavior skills from distinct tasks with varying numbers of agents.
We also analyze the inherent non-stationarity of this multi-agent automatic curriculum teaching problem and provide a corresponding regret bound.
arXiv Detail & Related papers (2023-02-07T12:30:52Z) - Unified Policy Optimization for Continuous-action Reinforcement Learning
in Non-stationary Tasks and Games [6.196828712245427]
This paper addresses learning in non-stationary environments and games with continuous actions.
We prove that PORL has a last-iterate convergence algorithm, which is important for adversarial and cooperative games.
arXiv Detail & Related papers (2022-08-19T17:12:31Z) - Weakly Supervised Disentangled Representation for Goal-conditioned
Reinforcement Learning [15.698612710580447]
We propose a skill learning framework DR-GRL that aims to improve the sample efficiency and policy generalization.
In a weakly supervised manner, we propose a Spatial Transform AutoEncoder (STAE) to learn an interpretable and controllable representation.
We empirically demonstrate that DR-GRL significantly outperforms the previous methods in sample efficiency and policy generalization.
arXiv Detail & Related papers (2022-02-28T09:05:14Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
offline reinforcement learning enables learning from a fixed dataset, without further interactions with the environment.
We propose a framework that supports learning a flexible yet well-regularized fully-implicit policy.
Experiments and ablation study on the D4RL dataset validate our framework and the effectiveness of our algorithmic designs.
arXiv Detail & Related papers (2022-02-19T20:22:04Z) - Curriculum Learning for Safe Mapless Navigation [71.55718344087657]
This work investigates the effects of Curriculum Learning (CL)-based approaches on the agent's performance.
In particular, we focus on the safety aspect of robotic mapless navigation, comparing over a standard end-to-end (E2E) training strategy.
arXiv Detail & Related papers (2021-12-23T12:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.