論文の概要: Bias or Optimality? Disentangling Bayesian Inference and Learning Biases in Human Decision-Making
- arxiv url: http://arxiv.org/abs/2505.08049v1
- Date: Mon, 12 May 2025 20:36:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.326668
- Title: Bias or Optimality? Disentangling Bayesian Inference and Learning Biases in Human Decision-Making
- Title(参考訳): バイアスか最適か : ベイズ的推論と人間の意思決定における学習バイアスを遠ざける
- Authors: Prakhar Godara,
- Abstract要約: エージェントが客観的ベイズ推定によってその信念を更新しても、標準Q-ラーニングモデルに非対称学習率を適合させることは、両方のバイアスを回復させる。
本稿では、これらの学習システムの力学をマスター方程式を用いて解析することによって説明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies claim that human behavior in a two-armed Bernoulli bandit (TABB) task is described by positivity and confirmation biases, implying that humans do not integrate new information objectively. However, we find that even if the agent updates its belief via objective Bayesian inference, fitting the standard Q-learning model with asymmetric learning rates still recovers both biases. Bayesian inference cast as an effective Q-learning algorithm has symmetric, though decreasing, learning rates. We explain this by analyzing the stochastic dynamics of these learning systems using master equations. We find that both confirmation bias and unbiased but decreasing learning rates yield the same behavioral signatures. Finally, we propose experimental protocols to disentangle true cognitive biases from artifacts of decreasing learning rates.
- Abstract(参考訳): 最近の研究では、二本腕のBernoulli bandit(TABB)タスクにおける人間の行動は、肯定性と確認バイアスによって説明され、人間が客観的に新しい情報を統合しないことが示唆されている。
しかし、エージェントが客観的ベイズ推定によってその信念を更新しても、標準Q-ラーニングモデルに非対称学習率を適合させることは、両方のバイアスを回復させる。
効果的なQ-ラーニングアルゴリズムとしてのベイズ推論は、学習率を低下させるが対称である。
本稿では、これらの学習システムの確率力学をマスター方程式を用いて解析することによって説明する。
確認バイアスと偏見がないが学習率の低下の両方が、同じ行動シグネチャをもたらすことがわかった。
最後に,学習率を低下させる人工物から真の認知バイアスを解き放つための実験的プロトコルを提案する。
関連論文リスト
- CM-DQN: A Value-Based Deep Reinforcement Learning Model to Simulate Confirmation Bias [0.0]
本稿では,人間の意思決定過程をシミュレートするために,Deep Reinforcement Learning(CM-DQN)に新たなアルゴリズムを提案する。
我々は,Lunar Lander環境において,確認的,不確認的バイアス,非バイアスを用いて学習効果を観察する。
論文 参考訳(メタデータ) (2024-07-10T08:16:13Z) - DebCSE: Rethinking Unsupervised Contrastive Sentence Embedding Learning
in the Debiasing Perspective [1.351603931922027]
様々なバイアスの影響を効果的に排除することは、高品質な文の埋め込みを学習するために重要であると論じる。
本稿では,これらのバイアスの影響を排除できる文埋め込みフレームワークDebCSEを提案する。
論文 参考訳(メタデータ) (2023-09-14T02:43:34Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
我々はCPR(Cross Pairwise Ranking)という新しい学習パラダイムを開発する。
CPRは、露出メカニズムを知らずに不偏の推奨を達成する。
理論的には、この方法が学習に対するユーザ/イテムの適合性の影響を相殺することを証明する。
論文 参考訳(メタデータ) (2022-04-26T09:20:27Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
本稿では,D-BAT(Diversity-By-dis-Agreement Training)を提案する。
我々は、D-BATが一般化された相違の概念から自然に現れることを示す。
論文 参考訳(メタデータ) (2022-02-09T12:03:02Z) - On the Estimation Bias in Double Q-Learning [20.856485777692594]
二重Q学習は完全にバイアスがなく、過小評価バイアスに悩まされている。
そのような過小評価バイアスは、近似されたベルマン作用素の下で複数の最適でない不動点をもたらす可能性があることを示す。
ダブルQ-ラーニングにおける過小評価バイアスに対する部分修正として,単純だが効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-29T13:41:24Z) - Fairness-aware Class Imbalanced Learning [57.45784950421179]
つぶやきの感情と職業分類のロングテール学習手法を評価する。
フェアネスを強制する手法により、マージンロスに基づくアプローチを拡張します。
論文 参考訳(メタデータ) (2021-09-21T22:16:30Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
ニューラルネットワークは、所望の知識よりも学習が簡単である場合にのみ、素早い相関に依存することを学習していることを示す。
本稿では,一対のニューラルネットワークを同時にトレーニングすることで,障害に基づくデバイアス化手法を提案する。
本手法は,合成データセットと実世界のデータセットの両方において,各種バイアスに対するネットワークのトレーニングを大幅に改善する。
論文 参考訳(メタデータ) (2020-07-06T07:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。