Process Tomography for Clifford Unitaries
- URL: http://arxiv.org/abs/2505.08069v1
- Date: Mon, 12 May 2025 21:11:04 GMT
- Title: Process Tomography for Clifford Unitaries
- Authors: Timothy Skaras, Paul Ginsparg,
- Abstract summary: We present an algorithm for performing quantum process tomography on an unknown $n$-qubit unitary $C$.<n>Our algorithm achieves the same performance without querying $Cdagger$.
- Score: 0.276240219662896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an algorithm for performing quantum process tomography on an unknown $n$-qubit unitary $C$ from the Clifford group. Our algorithm uses Bell basis measurements to deterministically learn $C$ with $4n + 3$ queries, which is the asymptotically optimal query complexity. In contrast to previous algorithms that required access to $C^\dagger$ to achieve optimal query complexity, our algorithm achieves the same performance without querying $C^\dagger$. Additionally, we show the algorithm is robust to perturbations and can efficiently learn the closest Clifford to an unknown non-Clifford unitary $U$ using query overhead that is logarithmic in the number of qubits.
Related papers
- A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - A Competitive Algorithm for Agnostic Active Learning [5.4579367210379335]
Most popular algorithms for active learning express their performance in terms of a parameter called the disagreement coefficient.
We get an algorithm that is competitive with the optimal algorithm for any binary hypothesis class $H$ and distribution $D_X$ over $X$.
It is NP-hard to do better than our algorithm's $O(log |H|)$ overhead in general.
arXiv Detail & Related papers (2023-10-28T19:01:16Z) - Low-depth Clifford circuits approximately solve MaxCut [44.99833362998488]
We introduce a quantum-inspired approximation algorithm for MaxCut based on low-depth Clifford circuits.
Our algorithm finds an approximate solution of MaxCut on an $N$-vertex graph by building a depth $O(N)$ Clifford circuit.
arXiv Detail & Related papers (2023-10-23T15:20:03Z) - Robust Approximation Algorithms for Non-monotone $k$-Submodular
Maximization under a Knapsack Constraint [0.0]
Two deterministic approximation algorithms are presented for the problem of non-monotone $k$-submodular complexity under a knapsack constraint.
Our algorithms provide constant approximation ratios within only $O(nk)$ query complexity for the non-monotone objective.
arXiv Detail & Related papers (2023-09-21T12:42:52Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Provably Efficient Reinforcement Learning via Surprise Bound [66.15308700413814]
We propose a provably efficient reinforcement learning algorithm (both computationally and statistically) with general value function approximations.
Our algorithm achieves reasonable regret bounds when applied to both the linear setting and the sparse high-dimensional linear setting.
arXiv Detail & Related papers (2023-02-22T20:21:25Z) - Deterministic Nonsmooth Nonconvex Optimization [82.39694252205011]
We show that randomization is necessary to obtain a dimension-free dimension-free algorithm.<n>Our algorithm yields the first deterministic dimension-free algorithm for optimizing ReLU networks.
arXiv Detail & Related papers (2023-02-16T13:57:19Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems.
We show that the algorithm finds the optimal solution in time $O*(2(0.5-c)n)$ for an $n$-independent constant $c$.
We also show that for a large fraction of random instances from the $k$-spin model and for any fully satisfiable or slightly frustrated $k$-CSP formula, statement (a) is the case.
arXiv Detail & Related papers (2022-12-03T02:45:23Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
In this paper, we establish an efficient online sub-sampling framework that measures the information gain of data points collected by an RL algorithm.
For a value-based method with complexity-bounded function class, we show that the policy only needs to be updated for $proptooperatornamepolylog(K)$ times.
In contrast to existing approaches that update the policy for at least $Omega(K)$ times, our approach drastically reduces the number of optimization calls in solving for a policy.
arXiv Detail & Related papers (2021-06-14T07:36:25Z) - Time and Query Optimal Quantum Algorithms Based on Decision Trees [2.492300648514128]
We show that a quantum algorithm can be implemented in time $tilde O(sqrtGT)$.
Our algorithm is based on non-binary span programs and their efficient implementation.
arXiv Detail & Related papers (2021-05-18T06:51:11Z) - Quick Streaming Algorithms for Maximization of Monotone Submodular
Functions in Linear Time [16.346069386394703]
We consider the problem of monotone, submodular over a ground set of size $n$ subject to cardinality constraint $k$.
We introduce the first deterministic algorithms with linear time complexity; these algorithms are streaming algorithms.
Our single-pass algorithm obtains a constant ratio in $lceil n / c rceil + c$ oracle queries, for any $c ge 1$.
arXiv Detail & Related papers (2020-09-10T16:35:54Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.