論文の概要: A Federated Random Forest Solution for Secure Distributed Machine Learning
- arxiv url: http://arxiv.org/abs/2505.08085v1
- Date: Mon, 12 May 2025 21:40:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.343593
- Title: A Federated Random Forest Solution for Secure Distributed Machine Learning
- Title(参考訳): セキュア分散機械学習のためのフェデレーションランダムフォレストソリューション
- Authors: Alexandre Cotorobai, Jorge Miguel Silva, Jose Luis Oliveira,
- Abstract要約: 本稿では,データプライバシを保護し,分散環境での堅牢な性能を提供するランダムフォレスト分類器のためのフェデレート学習フレームワークを提案する。
PySyftをセキュアでプライバシを意識した計算に活用することにより、複数の機関がローカルに保存されたデータ上でランダムフォレストモデルを協調的にトレーニングすることが可能となる。
2つの実世界の医療ベンチマークの実験は、フェデレートされたアプローチが、集中型のメソッドの最大9%のマージンで、競争の正確性を維持していることを示している。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Privacy and regulatory barriers often hinder centralized machine learning solutions, particularly in sectors like healthcare where data cannot be freely shared. Federated learning has emerged as a powerful paradigm to address these concerns; however, existing frameworks primarily support gradient-based models, leaving a gap for more interpretable, tree-based approaches. This paper introduces a federated learning framework for Random Forest classifiers that preserves data privacy and provides robust performance in distributed settings. By leveraging PySyft for secure, privacy-aware computation, our method enables multiple institutions to collaboratively train Random Forest models on locally stored data without exposing sensitive information. The framework supports weighted model averaging to account for varying data distributions, incremental learning to progressively refine models, and local evaluation to assess performance across heterogeneous datasets. Experiments on two real-world healthcare benchmarks demonstrate that the federated approach maintains competitive predictive accuracy - within a maximum 9\% margin of centralized methods - while satisfying stringent privacy requirements. These findings underscore the viability of tree-based federated learning for scenarios where data cannot be centralized due to regulatory, competitive, or technical constraints. The proposed solution addresses a notable gap in existing federated learning libraries, offering an adaptable tool for secure distributed machine learning tasks that demand both transparency and reliable performance. The tool is available at https://github.com/ieeta-pt/fed_rf.
- Abstract(参考訳): プライバシーと規制の障壁は、特にデータを自由に共有できない医療などの分野において、中央集権的な機械学習ソリューションを妨げることが多い。
しかし、既存のフレームワークは主に勾配ベースのモデルをサポートしており、より解釈可能なツリーベースのアプローチのギャップを残している。
本稿では,データプライバシを保護し,分散環境での堅牢な性能を提供するランダムフォレスト分類器のためのフェデレート学習フレームワークを提案する。
PySyftをセキュアでプライバシを意識した計算に活用することにより、複数の機関が機密情報を漏らさずに、ローカルに保存されたデータ上でランダムフォレストモデルを協調的に訓練することが可能となる。
このフレームワークは、さまざまなデータ分散を考慮に入れた重み付きモデル平均化、モデルを段階的に洗練するための漸進的な学習、異種データセット間のパフォーマンスを評価するための局所評価をサポートする。
2つの実世界の医療ベンチマークの実験では、フェデレートされたアプローチが、厳格なプライバシ要件を満たす一方で、競争上の予測精度(集中型メソッドの最大9.5%の範囲内)を維持していることが示されている。
これらの知見は、規制、競争、技術的制約によりデータが集中できないシナリオにおいて、ツリーベースのフェデレーション学習が実現可能であることを明らかにする。
提案されたソリューションは、既存のフェデレートされた学習ライブラリの顕著なギャップに対処し、透明性と信頼性の両方のパフォーマンスを要求する分散機械学習タスクをセキュアにするための適応可能なツールを提供する。
このツールはhttps://github.com/ieeta-pt/fed_rf.comで入手できる。
関連論文リスト
- Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
本稿では,同じフェデレーションネットワークにおけるデータの統計的不均一性の問題に焦点をあてる。
FedAvg、FedProx、Federated Curvature(FedCurv)など、いくつかのフェデレートラーニングアルゴリズムがすでに提案されている。
この研究の副産物として、FLコミュニティからのさらなる比較を容易にするために使用したデータセットの非IIDバージョンをリリースします。
論文 参考訳(メタデータ) (2023-03-31T10:13:01Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
フェデレートラーニング(Federated Learning)とは、ローカルに計算されたパラメータの更新を、空間的に分散されたクライアントサイロからトレーニングデータに集約することで、共有サーバモデルによる学習を可能にする分散機械学習アプローチである。
本研究では, 勾配の共分散とヘッセンの幾何学的平均を利用して, シロ間およびシロ内成分の両方を捕捉するフェデレート不変学習一貫性(FedILC)アプローチを提案する。
これは医療、コンピュータビジョン、IoT(Internet of Things)といった様々な分野に関係している。
論文 参考訳(メタデータ) (2022-05-19T03:32:03Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - FedMix: Approximation of Mixup under Mean Augmented Federated Learning [60.503258658382]
フェデレートラーニング(FL)は、エッジデバイスが各デバイス内でデータを直接共有することなく、モデルを集合的に学習することを可能にする。
現在の最先端アルゴリズムは、クライアント間のローカルデータの均一性が増大するにつれて性能劣化に悩まされる。
我々はFedMixという名の新しい拡張アルゴリズムを提案し、これは驚くべきが単純なデータ拡張手法であるMixupにインスパイアされている。
論文 参考訳(メタデータ) (2021-07-01T06:14:51Z) - Weight Divergence Driven Divide-and-Conquer Approach for Optimal
Federated Learning from non-IID Data [0.0]
Federated Learningは、トレーニングデータを集中化することなく、分散デバイスに格納されたデータのトレーニングを可能にする。
本稿では,一般的なFedAvgアグリゲーションアルゴリズムの活用を可能にする,新しいDivide-and-Conquerトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-06-28T09:34:20Z) - Robustness and Personalization in Federated Learning: A Unified Approach
via Regularization [4.7234844467506605]
我々は、Fed+と呼ばれる堅牢でパーソナライズされたフェデレーション学習のための一連の方法を提案する。
Fed+の主な利点は、フェデレートトレーニングで見られる現実世界の特徴をよりよく適応することである。
ベンチマークデータセットに関する広範な実験を通じて、Fed+の利点を実証する。
論文 参考訳(メタデータ) (2020-09-14T10:04:30Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
フェデレーション・ラーニング(Federated Learning)とは、エッジデバイスのセットが、中央サーバのオーケストレーションの下でモデルを協調的にトレーニングする、機械学習環境である。
本稿では,モデルユーティリティの劣化を伴わずに,プライバシ問題に対処するフェデレーション学習手法を開発する。
このアプローチのエンドツーエンドのプライバシ保証を厳格に提供し、理論的収束率を分析します。
論文 参考訳(メタデータ) (2020-03-30T19:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。