Multi-modal wound classification using wound image and location by Xception and Gaussian Mixture Recurrent Neural Network (GMRNN)
- URL: http://arxiv.org/abs/2505.08086v1
- Date: Mon, 12 May 2025 21:44:03 GMT
- Title: Multi-modal wound classification using wound image and location by Xception and Gaussian Mixture Recurrent Neural Network (GMRNN)
- Authors: Ramin Mousa, Ehsan Matbooe, Hakimeh Khojasteh, Amirali Bengari, Mohammadmahdi Vahediahmar,
- Abstract summary: We propose a multi-modal AI model based on transfer learning (TL), which combines two state-of-the-art architectures, Xception and GMRNN, for wound classification.<n>The proposed method is comprehensively compared with deep neural networks (DNN) for medical image analysis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The effective diagnosis of acute and hard-to-heal wounds is crucial for wound care practitioners to provide effective patient care. Poor clinical outcomes are often linked to infection, peripheral vascular disease, and increasing wound depth, which collectively exacerbate these comorbidities. However, diagnostic tools based on Artificial Intelligence (AI) speed up the interpretation of medical images and improve early detection of disease. In this article, we propose a multi-modal AI model based on transfer learning (TL), which combines two state-of-the-art architectures, Xception and GMRNN, for wound classification. The multi-modal network is developed by concatenating the features extracted by a transfer learning algorithm and location features to classify the wound types of diabetic, pressure, surgical, and venous ulcers. The proposed method is comprehensively compared with deep neural networks (DNN) for medical image analysis. The experimental results demonstrate a notable wound-class classifications (containing only diabetic, pressure, surgical, and venous) vary from 78.77 to 100\% in various experiments. The results presented in this study showcase the exceptional accuracy of the proposed methodology in accurately classifying the most commonly occurring wound types using wound images and their corresponding locations.
Related papers
- Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis [16.268045905735818]
We propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification.<n>By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach.<n>Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets.
arXiv Detail & Related papers (2025-04-18T15:39:46Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Improving Classification of Retinal Fundus Image Using Flow Dynamics
Optimized Deep Learning Methods [0.0]
Diabetic Retinopathy (DR) refers to a barrier that takes place in diabetes mellitus damaging the blood vessel network present in the retina.
It can take some time to perform a DR diagnosis using color fundus pictures because experienced clinicians are required to identify the tumors in the imagery used to identify the illness.
arXiv Detail & Related papers (2023-04-29T16:11:34Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - Multi-modal Wound Classification using Wound Image and Location by Deep
Neural Network [2.25739374955489]
This study developed a deep neural network-based multi-modal classifier using wound images and their corresponding locations.
A body map is also developed to prepare the location data, which can help wound specialists tag wound locations more efficiently.
arXiv Detail & Related papers (2021-09-14T21:00:30Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
The most common type of primary malignant bone tumor is osteosarcoma.
CNNs can significantly decrease surgeon's workload and make a better prognosis of patient conditions.
CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance.
arXiv Detail & Related papers (2020-11-02T18:16:17Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Deep Multi-Scale Resemblance Network for the Sub-class Differentiation
of Adrenal Masses on Computed Tomography Images [16.041873352037594]
Adrenal masses can be benign or malignant and benign masses have varying prevalence.
CNNs are the state-of-the-art in maximizing inter-class differences in large medical imaging training datasets.
The application of CNNs, to adrenal masses is challenging due to large intra-class variations, large inter-class similarities and imbalanced training data.
We developed a deep multi-scale resemblance network (DMRN) to overcome these limitations and leveraged paired CNNs to evaluate the intra-class similarities.
arXiv Detail & Related papers (2020-07-29T06:24:53Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.