Asynchronous Multi-Object Tracking with an Event Camera
- URL: http://arxiv.org/abs/2505.08126v1
- Date: Mon, 12 May 2025 23:53:08 GMT
- Title: Asynchronous Multi-Object Tracking with an Event Camera
- Authors: Angus Apps, Ziwei Wang, Vladimir Perejogin, Timothy Molloy, Robert Mahony,
- Abstract summary: We present the Asynchronous Event Multi-Object Tracking (AEMOT) algorithm for detecting and tracking multiple objects by processing individual raw events asynchronously.<n>We evaluate AEMOT on a new Bee Swarm dataset, where it tracks dozens of small bees with precision and recall performance exceeding that of alternative event-based detection and tracking algorithms by over 37%.
- Score: 4.001017064909953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Events cameras are ideal sensors for enabling robots to detect and track objects in highly dynamic environments due to their low latency output, high temporal resolution, and high dynamic range. In this paper, we present the Asynchronous Event Multi-Object Tracking (AEMOT) algorithm for detecting and tracking multiple objects by processing individual raw events asynchronously. AEMOT detects salient event blob features by identifying regions of consistent optical flow using a novel Field of Active Flow Directions built from the Surface of Active Events. Detected features are tracked as candidate objects using the recently proposed Asynchronous Event Blob (AEB) tracker in order to construct small intensity patches of each candidate object. A novel learnt validation stage promotes or discards candidate objects based on classification of their intensity patches, with promoted objects having their position, velocity, size, and orientation estimated at their event rate. We evaluate AEMOT on a new Bee Swarm Dataset, where it tracks dozens of small bees with precision and recall performance exceeding that of alternative event-based detection and tracking algorithms by over 37%. Source code and the labelled event Bee Swarm Dataset will be open sourced
Related papers
- Event-based Tiny Object Detection: A Benchmark Dataset and Baseline [37.60578568397082]
Small object detection (SOD) in anti-UAV task is a challenging problem due to the small size of UAVs and complex backgrounds.<n>Event cameras, with microsecond temporal resolution and high dynamic range, provide a more effective solution for SOD.<n>Existing event-based object detection datasets are limited in scale, feature large targets size, and lack diverse backgrounds, making them unsuitable for SOD benchmarks.<n>In this paper, we introduce a Event-based Small object detection (EVSOD) dataset (namely EV-UAV), the first large-scale, highly diverse benchmark for anti-UAV tasks.
arXiv Detail & Related papers (2025-06-30T07:28:50Z) - STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
Multiple object tracking (MOT) in Unmanned Aerial Vehicle (UAV) videos is important for diverse applications in computer vision.
We propose a novel Spatio-Temporal Cohesion Multiple Object Tracking framework (STCMOT)
We use historical embedding features to model the representation of ReID and detection features in a sequential order.
Our framework sets a new state-of-the-art performance in MOTA and IDF1 metrics.
arXiv Detail & Related papers (2024-09-17T14:34:18Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOT is an event-based multi-object tracker.
SpikeMOT uses spiking neural networks to extract sparsetemporal features from event streams associated with objects.
arXiv Detail & Related papers (2023-09-29T05:13:43Z) - Event-Free Moving Object Segmentation from Moving Ego Vehicle [88.33470650615162]
Moving object segmentation (MOS) in dynamic scenes is an important, challenging, but under-explored research topic for autonomous driving.
Most segmentation methods leverage motion cues obtained from optical flow maps.
We propose to exploit event cameras for better video understanding, which provide rich motion cues without relying on optical flow.
arXiv Detail & Related papers (2023-04-28T23:43:10Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
Event-based cameras are bio-inspired sensors that capture brightness change of every pixel in an asynchronous manner.
Event streams are divided into grids in the x-y-t coordinates for both positive and negative polarity, producing a set of pillars as 3D tensor representation.
Long memory is encoded in the hidden state of adaptive convLSTMs while short memory is modeled by computing spatial-temporal correlation between event pillars.
arXiv Detail & Related papers (2023-03-17T12:12:41Z) - Avoiding Post-Processing with Event-Based Detection in Biomedical
Signals [69.34035527763916]
We propose an event-based modeling framework that directly works with events as learning targets.
We show that event-based modeling (without post-processing) performs on par with or better than epoch-based modeling with extensive post-processing.
arXiv Detail & Related papers (2022-09-22T13:44:13Z) - Minkowski Tracker: A Sparse Spatio-Temporal R-CNN for Joint Object
Detection and Tracking [53.64390261936975]
We present Minkowski Tracker, a sparse-temporal R-CNN that jointly solves object detection and tracking problems.
Inspired by region-based CNN (R-CNN), we propose to track motion as a second stage of the object detector R-CNN.
We show in large-scale experiments that the overall performance gain of our method is due to four factors.
arXiv Detail & Related papers (2022-08-22T04:47:40Z) - eCDT: Event Clustering for Simultaneous Feature Detection and Tracking- [4.094848360328624]
Event Clustering-based Detection Tracking (eCDT)
Our method 30% better feature tracking ages compared with the state-of-the-art approach.
arXiv Detail & Related papers (2022-07-19T07:39:04Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
We propose an Event-based Tracking-by-Detection (ETD) method for generic bounding box-based object tracking.
To achieve this goal, we present an Adaptive Time-Surface with Linear Time Decay (ATSLTD) event-to-frame conversion algorithm.
We compare the proposed ETD method with seven popular object tracking methods, that are based on conventional cameras or event cameras, and two variants of ETD.
arXiv Detail & Related papers (2020-02-13T15:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.