Hyperbolic Contrastive Learning with Model-augmentation for Knowledge-aware Recommendation
- URL: http://arxiv.org/abs/2505.08157v1
- Date: Tue, 13 May 2025 01:30:27 GMT
- Title: Hyperbolic Contrastive Learning with Model-augmentation for Knowledge-aware Recommendation
- Authors: Shengyin Sun, Chen Ma,
- Abstract summary: We propose hyperbolic contrastive learning with model-augmentation for knowledge-aware recommendation.<n>To capture the intrinsic hierarchical graph structures, we first design a novel Lorentzian knowledge aggregation mechanism.<n>Then, we propose three model-level augmentation techniques to assist Hyperbolic contrastive learning.
- Score: 3.7650153431012088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benefiting from the effectiveness of graph neural networks (GNNs) and contrastive learning, GNN-based contrastive learning has become mainstream for knowledge-aware recommendation. However, most existing contrastive learning-based methods have difficulties in effectively capturing the underlying hierarchical structure within user-item bipartite graphs and knowledge graphs. Moreover, they commonly generate positive samples for contrastive learning by perturbing the graph structure, which may lead to a shift in user preference learning. To overcome these limitations, we propose hyperbolic contrastive learning with model-augmentation for knowledge-aware recommendation. To capture the intrinsic hierarchical graph structures, we first design a novel Lorentzian knowledge aggregation mechanism, which enables more effective representations of users and items. Then, we propose three model-level augmentation techniques to assist Hyperbolic contrastive learning. Different from the classical structure-level augmentation (e.g., edge dropping), the proposed model-augmentations can avoid preference shifts between the augmented positive pair. Finally, we conduct extensive experiments to demonstrate the superiority (maximum improvement of $11.03\%$) of proposed methods over existing baselines.
Related papers
- Knowledge Graph Enhanced Generative Multi-modal Models for Class-Incremental Learning [51.0864247376786]
We introduce a Knowledge Graph Enhanced Generative Multi-modal model (KG-GMM) that builds an evolving knowledge graph throughout the learning process.<n>During testing, we propose a Knowledge Graph Augmented Inference method that locates specific categories by analyzing relationships within the generated text.
arXiv Detail & Related papers (2025-03-24T07:20:43Z) - Uncovering Capabilities of Model Pruning in Graph Contrastive Learning [6.872289094878493]
We reformulate the problem of graph contrastive learning via contrasting different model versions rather than augmented views.<n>We extensively validate our method on various benchmarks regarding graph classification via unsupervised and transfer learning.
arXiv Detail & Related papers (2024-10-27T07:09:31Z) - TwinCL: A Twin Graph Contrastive Learning Model for Collaborative Filtering [20.26347686022996]
We introduce a twin encoder in place of random augmentations, demonstrating the redundancy of traditional augmentation techniques.
Our proposed Twin Graph Contrastive Learning model -- TwinCL -- aligns positive pairs of user and item embeddings and the representations from the twin encoder.
Our theoretical analysis and experimental results show that the proposed model contributes to better recommendation accuracy and training efficiency performance.
arXiv Detail & Related papers (2024-09-27T22:31:08Z) - Hierarchical Contrastive Learning Enhanced Heterogeneous Graph Neural
Network [59.860534520941485]
Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN)
Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels.
In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo.
arXiv Detail & Related papers (2023-04-24T16:17:21Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
Graph neural clustering network (GNN) is a powerful learning approach for graph-based recommender systems.
In this paper, we propose a simple yet effective graph contrastive learning paradigm LightGCL.
arXiv Detail & Related papers (2023-02-16T10:16:21Z) - Adversarial Learning Data Augmentation for Graph Contrastive Learning in
Recommendation [56.10351068286499]
We propose Learnable Data Augmentation for Graph Contrastive Learning (LDA-GCL)
Our methods include data augmentation learning and graph contrastive learning, which follow the InfoMin and InfoMax principles, respectively.
In implementation, our methods optimize the adversarial loss function to learn data augmentation and effective representations of users and items.
arXiv Detail & Related papers (2023-02-05T06:55:51Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
We apply the contrastive learning approach from images/graphs (we refer to it as HyperGCL) to improve generalizability of hypergraph neural networks.
We fabricate two schemes to augment hyperedges with higher-order relations encoded, and adopt three augmentation strategies from graph-structured data.
We propose a hypergraph generative model to generate augmented views, and then an end-to-end differentiable pipeline to jointly learn hypergraph augmentations and model parameters.
arXiv Detail & Related papers (2022-10-07T20:12:20Z) - Adversarial Graph Contrastive Learning with Information Regularization [51.14695794459399]
Contrastive learning is an effective method in graph representation learning.
Data augmentation on graphs is far less intuitive and much harder to provide high-quality contrastive samples.
We propose a simple but effective method, Adversarial Graph Contrastive Learning (ARIEL)
It consistently outperforms the current graph contrastive learning methods in the node classification task over various real-world datasets.
arXiv Detail & Related papers (2022-02-14T05:54:48Z) - Bi-CLKT: Bi-Graph Contrastive Learning based Knowledge Tracing [39.92424205497689]
The goal of Knowledge Tracing is to estimate how well students have mastered a concept based on their historical learning of related exercises.
With the recent rise of deep learning, Deep Knowledge Tracing has utilised Recurrent Neural Networks (RNNs) to accomplish this task with some success.
Other works have attempted to introduce Graph Neural Networks (GNNs) and redefine the task accordingly to achieve significant improvements.
We propose a Bi-Graph Contrastive Learning based Knowledge Tracing (Bi-CLKT) to address these limitations.
arXiv Detail & Related papers (2022-01-22T11:07:21Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
We propose a novel graph contrastive representation learning method with adaptive augmentation.
Specifically, we design augmentation schemes based on node centrality measures to highlight important connective structures.
Our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts.
arXiv Detail & Related papers (2020-10-27T15:12:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.