論文の概要: Unveiling the Best Practices for Applying Speech Foundation Models to Speech Intelligibility Prediction for Hearing-Impaired People
- arxiv url: http://arxiv.org/abs/2505.08215v1
- Date: Tue, 13 May 2025 04:07:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.419137
- Title: Unveiling the Best Practices for Applying Speech Foundation Models to Speech Intelligibility Prediction for Hearing-Impaired People
- Title(参考訳): 聴覚障害者の音声信頼度予測に音声基礎モデルを適用するためのベストプラクティス
- Authors: Haoshuai Zhou, Boxuan Cao, Changgeng Mo, Linkai Li, Shan Xiang Wang,
- Abstract要約: 音声基礎モデル(SFM)は、聴覚障害者のための音声の可聴性予測(SIP-HI)など、様々な下流課題において強い性能を示した。
SIP-HIの性能に影響を及ぼす重要な設計要因を5つのSFMで同定する。
その結果,従来の全層法とは対照的に,単一のエンコーダ層を選択することで,より良い結果が得られることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech foundation models (SFMs) have demonstrated strong performance across a variety of downstream tasks, including speech intelligibility prediction for hearing-impaired people (SIP-HI). However, optimizing SFMs for SIP-HI has been insufficiently explored. In this paper, we conduct a comprehensive study to identify key design factors affecting SIP-HI performance with 5 SFMs, focusing on encoder layer selection, prediction head architecture, and ensemble configurations. Our findings show that, contrary to traditional use-all-layers methods, selecting a single encoder layer yields better results. Additionally, temporal modeling is crucial for effective prediction heads. We also demonstrate that ensembling multiple SFMs improves performance, with stronger individual models providing greater benefit. Finally, we explore the relationship between key SFM attributes and their impact on SIP-HI performance. Our study offers practical insights into effectively adapting SFMs for speech intelligibility prediction for hearing-impaired populations.
- Abstract(参考訳): 音声基礎モデル (SFMs) は, 聴覚障害者の音声明瞭度予測 (SIP-HI) など, 様々な下流課題において高い性能を示した。
しかし, SIP-HIに対するSFMの最適化は不十分である。
本稿では,SIP-HIの性能に影響を及ぼす重要な設計要因を5つのSFMで同定し,エンコーダ層選択,予測ヘッドアーキテクチャ,アンサンブル構成に着目した総合的研究を行う。
その結果,従来の全層法とは対照的に,単一のエンコーダ層を選択することで,より良い結果が得られることがわかった。
さらに、時間的モデリングは効果的な予測ヘッドに不可欠である。
また、複数のSFMをアンサンブルすることで性能が向上し、より強力な個別モデルによりより優れた利益が得られることを示す。
最後に,鍵となるSFM特性とSIP-HI性能への影響について検討する。
本研究は,聴覚障害者に対する音声の可聴性予測にSFMを効果的に適用する実践的知見を提供する。
関連論文リスト
- $C^2$AV-TSE: Context and Confidence-aware Audio Visual Target Speaker Extraction [80.57232374640911]
我々はMask-And-Recover (MAR)と呼ばれるモデルに依存しない戦略を提案する。
MARは、モダリティ間およびモダリティ間コンテキスト相関を統合し、抽出モジュール内の大域的推論を可能にする。
各サンプルの難易度を向上するために, 精細信頼スコア(FCS)モデルを導入する。
論文 参考訳(メタデータ) (2025-04-01T13:01:30Z) - Acoustic Model Optimization over Multiple Data Sources: Merging and Valuation [13.009945735929445]
本稿では,音声認識分野の課題を解くための新しいパラダイムを提案する。
最初の段階では、完全な音声データの異なるサブセットに基づいて複数の音響モデルを訓練する。
第2段階では、2つの新しいアルゴリズムを用いて高品質な音響モデルを生成する。
論文 参考訳(メタデータ) (2024-10-21T03:48:23Z) - Improved Noise Schedule for Diffusion Training [51.849746576387375]
本稿では,拡散モデルのトレーニングを強化するため,ノイズスケジュールを設計するための新しい手法を提案する。
我々は,標準のコサインスケジュールよりもノイズスケジュールの方が優れていることを実証的に示す。
論文 参考訳(メタデータ) (2024-07-03T17:34:55Z) - On the Evaluation of Speech Foundation Models for Spoken Language Understanding [87.52911510306011]
Spoken Language Understanding Evaluation (SLUE) というベンチマークタスクスイートが最近導入され、オープンリソースやベンチマークの必要性に対処している。
このベンチマークは、これらのSLUタスクに事前訓練された音声基礎モデル(SFM)を使用することで、予備的な成功を収めた。
どのSFMがこれらの複雑なSLUタスクに最も恩恵をもたらすか、そしてこれらのSFMを組み込む上で最も効果的なアプローチは何か?
論文 参考訳(メタデータ) (2024-06-14T14:37:52Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
大規模言語モデル(LLM)はマルチメディアアプリケーションで複数のタスクを実行する上で大きな可能性を証明している。
MoEは、効率的なタスクデカップリングのためのスパースアーキテクチャによる有望なソリューションとして登場した。
Intuition-MoR1Eは14のパブリックデータセットで優れた効率と2.15%の全体的な精度向上を実現している。
論文 参考訳(メタデータ) (2024-04-13T12:14:58Z) - The Uncanny Valley: A Comprehensive Analysis of Diffusion Models [1.223779595809275]
拡散モデル (DM) は高品質な画像の生成に大きな進歩をもたらした。
ノイズスケジュールやサンプル,ガイダンスなど,さまざまなDMアーキテクチャのキーとなる側面について検討する。
比較分析の結果,拡散確率モデル(DDPM)に基づく拡散力学はノイズ条件付きスコアネットワーク(NCSN)より一貫して優れていた。
論文 参考訳(メタデータ) (2024-02-20T20:49:22Z) - Speech foundation models on intelligibility prediction for
hearing-impaired listeners [4.742307809368852]
音声基礎モデル(SFM)は、多くの音声処理タスクでベンチマークされている。
本稿では,10個のSFMの体系的評価を行い,その1つの応用について述べる。
そこで本研究では,凍結したSFM上で特別な予測ヘッドを学習し,この問題に対処する簡単な手法を提案する。
論文 参考訳(メタデータ) (2024-01-24T18:26:52Z) - Inference and Denoise: Causal Inference-based Neural Speech Enhancement [83.4641575757706]
本研究では、雑音の存在を介入としてモデル化することにより、因果推論パラダイムにおける音声強調(SE)課題に対処する。
提案した因果推論に基づく音声強調(CISE)は,ノイズ検出器を用いて間欠雑音音声中のクリーンフレームとノイズフレームを分離し,両フレームセットを2つのマスクベース拡張モジュール(EM)に割り当て,ノイズ条件SEを実行する。
論文 参考訳(メタデータ) (2022-11-02T15:03:50Z) - A Systematic Comparison of Phonetic Aware Techniques for Speech
Enhancement [20.329872147913584]
音声強調モデルにおける音声情報の統合方法の比較を行った。
異なる音声コンテンツモデルと様々な特徴注入技術が性能向上に与える影響を観察する。
論文 参考訳(メタデータ) (2022-06-22T12:00:50Z) - LDNet: Unified Listener Dependent Modeling in MOS Prediction for
Synthetic Speech [67.88748572167309]
本稿では,平均世論スコア(MOS)予測のための統合フレームワークLDNetを提案する。
より安定した結果と効率的な計算を提供する2つの推論手法を提案する。
論文 参考訳(メタデータ) (2021-10-18T08:52:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。