Enhancing Cache-Augmented Generation (CAG) with Adaptive Contextual Compression for Scalable Knowledge Integration
- URL: http://arxiv.org/abs/2505.08261v1
- Date: Tue, 13 May 2025 06:24:48 GMT
- Title: Enhancing Cache-Augmented Generation (CAG) with Adaptive Contextual Compression for Scalable Knowledge Integration
- Authors: Rishabh Agrawal, Himanshu Kumar,
- Abstract summary: Cache-Augmented Generation (CAG) has emerged as a promising alternative to Retrieval-Augmented Generation (RAG)<n>This paper introduces Adaptive Contextual Compression (ACC), an innovative technique designed to dynamically compress and manage context inputs.<n>We propose a Hybrid CAG-RAG Framework, which integrates selective retrieval to augment preloaded contexts in scenarios requiring additional information.
- Score: 6.399565088857091
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid progress in large language models (LLMs) has paved the way for novel approaches in knowledge-intensive tasks. Among these, Cache-Augmented Generation (CAG) has emerged as a promising alternative to Retrieval-Augmented Generation (RAG). CAG minimizes retrieval latency and simplifies system design by preloading knowledge into the model's context. However, challenges persist in scaling CAG to accommodate large and dynamic knowledge bases effectively. This paper introduces Adaptive Contextual Compression (ACC), an innovative technique designed to dynamically compress and manage context inputs, enabling efficient utilization of the extended memory capabilities of modern LLMs. To further address the limitations of standalone CAG, we propose a Hybrid CAG-RAG Framework, which integrates selective retrieval to augment preloaded contexts in scenarios requiring additional information. Comprehensive evaluations on diverse datasets highlight the proposed methods' ability to enhance scalability, optimize efficiency, and improve multi-hop reasoning performance, offering practical solutions for real-world knowledge integration challenges.
Related papers
- AdaVideoRAG: Omni-Contextual Adaptive Retrieval-Augmented Efficient Long Video Understanding [73.60257070465377]
AdaVideoRAG is a novel framework that adapts retrieval based on query complexity using a lightweight intent classifier.<n>Our framework employs an Omni-Knowledge Indexing module to build hierarchical databases from text (captions, ASR, OCR), visual features, and semantic graphs.<n> Experiments demonstrate improved efficiency and accuracy for long-video understanding, with seamless integration into existing MLLMs.
arXiv Detail & Related papers (2025-06-16T15:18:15Z) - KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG [63.82127103851471]
Retrieval-Augmented Generation (RAG) enables large language models to access broader knowledge sources.<n>We demonstrate that enhancing generative models' capacity to process noisy content is equally critical for robust performance.<n>We present KARE-RAG, which improves knowledge utilization through three key innovations.
arXiv Detail & Related papers (2025-06-03T06:31:17Z) - Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding [0.0]
We present a framework for enhancing Retrieval-Augmented Generation (RAG) systems through dynamic retrieval strategies and reinforcement fine-tuning.<n>Our framework integrates two complementary techniques: Policy-d RetrievalAugmented Generation (PORAG) and Adaptive Token-Layer Attention Scoring (ATLAS)<n>Our framework reduces hallucinations, strengthens domain-specific reasoning, and achieves significant efficiency and scalability gains over traditional RAG systems.
arXiv Detail & Related papers (2025-04-02T01:16:10Z) - RAG-KG-IL: A Multi-Agent Hybrid Framework for Reducing Hallucinations and Enhancing LLM Reasoning through RAG and Incremental Knowledge Graph Learning Integration [4.604003661048267]
RAG-KG-IL is a novel multi-agent hybrid framework designed to enhance the reasoning capabilities of Large Language Models.<n>It integrates Retrieval-Augmented Generation (RAG) and Knowledge Graphs (KGs) with an Incremental Learning (IL) approach.<n>We evaluate the framework using real-world case studies involving health-related queries.
arXiv Detail & Related papers (2025-03-14T11:50:16Z) - Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation [3.294519547931054]
Retrieval-Augmented Generation (RAG) integrates non-parametric knowledge from external knowledge bases into models.<n>Existing RAG methods struggle with open-domain Question Answering (QA) tasks.<n>We propose Adaptive memory-based optimization for enhanced RAG for open-domain QA tasks.
arXiv Detail & Related papers (2025-02-19T04:23:12Z) - Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model hallucinations.<n>Existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving.<n>We introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off.
arXiv Detail & Related papers (2025-02-17T18:56:20Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
Retrieval-augmented generation (RAG) has gained traction as a powerful approach for enhancing language models by integrating external knowledge sources.<n>This paper proposes an alternative paradigm, cache-augmented generation (CAG) that bypasses real-time retrieval.
arXiv Detail & Related papers (2024-12-20T06:58:32Z) - Adapter-Enhanced Semantic Prompting for Continual Learning [91.63494614012362]
Continual learning (CL) enables models to adapt to evolving data streams.<n>Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge.<n>We propose a novel lightweight CL framework, which integrates prompt tuning and adapter techniques.
arXiv Detail & Related papers (2024-12-15T06:14:55Z) - HAFLQ: Heterogeneous Adaptive Federated LoRA Fine-tuned LLM with Quantization [55.972018549438964]
Federated fine-tuning of pre-trained Large Language Models (LLMs) enables task-specific adaptation across diverse datasets while preserving privacy.<n>We propose HAFLQ (Heterogeneous Adaptive Federated Low-Rank Adaptation Fine-tuned LLM with Quantization), a novel framework for efficient and scalable fine-tuning of LLMs in heterogeneous environments.<n> Experimental results on the text classification task demonstrate that HAFLQ reduces memory usage by 31%, lowers communication cost by 49%, improves accuracy by 50%, and achieves faster convergence compared to the baseline method.
arXiv Detail & Related papers (2024-11-10T19:59:54Z) - DeepNote: Note-Centric Deep Retrieval-Augmented Generation [72.70046559930555]
Retrieval-Augmented Generation (RAG) mitigates factual errors and hallucinations in Large Language Models (LLMs) for question-answering (QA)<n>We develop DeepNote, an adaptive RAG framework that achieves in-depth and robust exploration of knowledge sources through note-centric adaptive retrieval.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Lighter And Better: Towards Flexible Context Adaptation For Retrieval Augmented Generation [32.26885597587913]
We introduce a novel approach called FlexRAG (Flexible Context Adaptation for RAG)
In this approach, the retrieved contexts are compressed into compact embeddings before being encoded by the Large Language Models (LLMs)
A key feature of FlexRAG is its flexibility, which enables effective support for diverse compression ratios and selective preservation of important contexts.
arXiv Detail & Related papers (2024-09-24T03:25:36Z) - Online Adaptation of Language Models with a Memory of Amortized Contexts [82.02369596879817]
Memory of Amortized Contexts (MAC) is an efficient and effective online adaptation framework for large language models.
We show how MAC can be combined with and improve the performance of popular alternatives such as retrieval augmented generations.
arXiv Detail & Related papers (2024-03-07T08:34:57Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.