An incremental algorithm for non-convex AI-enhanced medical image processing
- URL: http://arxiv.org/abs/2505.08324v1
- Date: Tue, 13 May 2025 08:03:14 GMT
- Title: An incremental algorithm for non-convex AI-enhanced medical image processing
- Authors: Elena Morotti,
- Abstract summary: We propose a hybrid framework that integrates model-based optimization and deep learning-based methods to solve inverse problems in medical imaging.<n>We show that incDG outperforms both conventional iterative solvers and deep learning-based methods, achieving superior accuracy and stability.<n>We conclude that incDG does not significantly degrade performance, making it a practical and powerful tool for solving non deblurring problems in imaging beyond.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving non-convex regularized inverse problems is challenging due to their complex optimization landscapes and multiple local minima. However, these models remain widely studied as they often yield high-quality, task-oriented solutions, particularly in medical imaging, where the goal is to enhance clinically relevant features rather than merely minimizing global error. We propose incDG, a hybrid framework that integrates deep learning with incremental model-based optimization to efficiently approximate the $\ell_0$-optimal solution of imaging inverse problems. Built on the Deep Guess strategy, incDG exploits a deep neural network to generate effective initializations for a non-convex variational solver, which refines the reconstruction through regularized incremental iterations. This design combines the efficiency of Artificial Intelligence (AI) tools with the theoretical guarantees of model-based optimization, ensuring robustness and stability. We validate incDG on TpV-regularized optimization tasks, demonstrating its effectiveness in medical image deblurring and tomographic reconstruction across diverse datasets, including synthetic images, brain CT slices, and chest-abdomen scans. Results show that incDG outperforms both conventional iterative solvers and deep learning-based methods, achieving superior accuracy and stability. Moreover, we confirm that training incDG without ground truth does not significantly degrade performance, making it a practical and powerful tool for solving non-convex inverse problems in imaging and beyond.
Related papers
- AI-Driven Diabetic Retinopathy Diagnosis Enhancement through Image Processing and Salp Swarm Algorithm-Optimized Ensemble Network [5.001689778344014]
Diabetic retinopathy is a leading cause of blindness in diabetic patients and early detection plays a crucial role in preventing vision loss.<n>We present an effective ensemble method for DR diagnosis comprising four main phases: image pre-processing, selection of backbone pre-trained models, feature enhancement, and optimization.<n>The proposed model is evaluated on the multiclass Kaggle APTOS 2019 dataset and obtained 88.52% accuracy.
arXiv Detail & Related papers (2025-03-18T12:35:56Z) - Multi-Scale Transformer Architecture for Accurate Medical Image Classification [4.578375402082224]
This study introduces an AI-driven skin lesion classification algorithm built on an enhanced Transformer architecture.<n>By integrating a multi-scale feature fusion mechanism and refining the self-attention process, the model effectively extracts both global and local features.<n>Performance evaluation on the ISIC 2017 dataset demonstrates that the improved Transformer surpasses established AI models.
arXiv Detail & Related papers (2025-02-10T08:22:25Z) - Efficient MedSAMs: Segment Anything in Medical Images on Laptop [69.28565867103542]
We organized the first international competition dedicated to promptable medical image segmentation.<n>The top teams developed lightweight segmentation foundation models and implemented an efficient inference pipeline.<n>The best-performing algorithms have been incorporated into the open-source software with a user-friendly interface to facilitate clinical adoption.
arXiv Detail & Related papers (2024-12-20T17:33:35Z) - Iterative-in-Iterative Super-Resolution Biomedical Imaging Using One
Real Image [8.412910029745762]
We propose an approach to train the deep learning-based super-resolution models using only one real image.
We employ a mixed metric of image screening to automatically select images with a distribution similar to ground truth.
After five training iterations, the proposed deep learning-based super-resolution model experienced a 7.5% and 5.49% improvement in structural similarity and peak-signal-to-noise ratio.
arXiv Detail & Related papers (2023-06-26T07:57:03Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Large-scale Global Low-rank Optimization for Computational Compressed
Imaging [8.594666859332124]
We present the global low-rank (GLR) optimization technique, realizing highly-efficient large-scale reconstruction with global self-similarity.
Inspired by the self-attention mechanism in deep learning, GLR extracts image patches by feature detection instead of conventional uniform selection.
We experimentally demonstrate GLR's effectiveness on temporal, frequency, and spectral dimensions.
arXiv Detail & Related papers (2023-01-08T14:12:51Z) - Fine-tuned Generative Adversarial Network-based Model for Medical Image Super-Resolution [2.647302105102753]
Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is a practical model for recovering HR images from real-world LR images.
We employ the high-order degradation model of the Real-ESRGAN which better simulates real-world image degradations.
The proposed model achieves superior perceptual quality compared to the Real-ESRGAN model, effectively preserving fine details and generating images with more realistic textures.
arXiv Detail & Related papers (2022-11-01T16:48:04Z) - A Generic Approach for Enhancing GANs by Regularized Latent Optimization [79.00740660219256]
We introduce a generic framework called em generative-model inference that is capable of enhancing pre-trained GANs effectively and seamlessly.
Our basic idea is to efficiently infer the optimal latent distribution for the given requirements using Wasserstein gradient flow techniques.
arXiv Detail & Related papers (2021-12-07T05:22:50Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
In this issue, we propose a novel image-specific convolutional modulation kernel (IKM)
We exploit the global contextual information of image or feature to generate an attention weight for adaptively modulating the convolutional kernels.
Experiments on single image super-resolution show that the proposed methods achieve superior performances over state-of-the-art methods.
arXiv Detail & Related papers (2021-11-16T11:05:10Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.