Structural-Temporal Coupling Anomaly Detection with Dynamic Graph Transformer
- URL: http://arxiv.org/abs/2505.08330v1
- Date: Tue, 13 May 2025 08:10:41 GMT
- Title: Structural-Temporal Coupling Anomaly Detection with Dynamic Graph Transformer
- Authors: Chang Zong, Yueting Zhuang, Jian Shao, Weiming Lu,
- Abstract summary: We propose a structural-temporal coupling anomaly detection architecture with a dynamic graph transformer model.<n>Specifically, we introduce structural and temporal features from two integration levels to provide anomaly-aware graph evolutionary patterns.
- Score: 41.16574023720132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting anomalous edges in dynamic graphs is an important task in many applications over evolving triple-based data, such as social networks, transaction management, and epidemiology. A major challenge with this task is the absence of structural-temporal coupling information, which decreases the ability of the representation to distinguish anomalies from normal instances. Existing methods focus on handling independent structural and temporal features with embedding models, which ignore the deep interaction between these two types of information. In this paper, we propose a structural-temporal coupling anomaly detection architecture with a dynamic graph transformer model. Specifically, we introduce structural and temporal features from two integration levels to provide anomaly-aware graph evolutionary patterns. Then, a dynamic graph transformer enhanced by two-dimensional positional encoding is implemented to capture both discrimination and contextual consistency signals. Extensive experiments on six datasets demonstrate that our method outperforms current state-of-the-art models. Finally, a case study illustrates the strength of our method when applied to a real-world task.
Related papers
- Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes.
We introduce a novel spatial- temporal memories-enhanced graph autoencoder (STRIPE)
STRIPE significantly outperforms existing methods with 5.8% improvement in AUC scores and 4.62X faster in training time.
arXiv Detail & Related papers (2024-03-14T02:26:10Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
We introduce the Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework for dynamic graph representation learning.
RSGT captures temporal node representations encoding both graph topology and evolving dynamics through a recurrent learning paradigm.
We show RSGT's superior performance in discrete dynamic graph representation learning, consistently outperforming existing methods in dynamic link prediction tasks.
arXiv Detail & Related papers (2023-04-20T04:12:50Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
We propose a novel disenTangled representation learning framework for discrete-time Dynamic graphs, namely DyTed.
We specially design a temporal-clips contrastive learning task together with a structure contrastive learning to effectively identify the time-invariant and time-varying representations respectively.
arXiv Detail & Related papers (2022-10-19T14:34:12Z) - Counterfactual Intervention Feature Transfer for Visible-Infrared Person
Re-identification [69.45543438974963]
We find graph-based methods in the visible-infrared person re-identification task (VI-ReID) suffer from bad generalization because of two issues.
The well-trained input features weaken the learning of graph topology, making it not generalized enough during the inference process.
We propose a Counterfactual Intervention Feature Transfer (CIFT) method to tackle these problems.
arXiv Detail & Related papers (2022-08-01T16:15:31Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - Anomaly Detection in Dynamic Graphs via Transformer [30.926884264054042]
We present a novel Transformer-based Anomaly Detection framework for DYnamic graph (TADDY)
Our framework constructs a comprehensive node encoding strategy to better represent each node's structural and temporal roles in an evolving graphs stream.
Our proposed TADDY framework outperforms the state-of-the-art methods by a large margin on four real-world datasets.
arXiv Detail & Related papers (2021-06-18T02:27:19Z) - Stacking VAE with Graph Neural Networks for Effective and Interpretable
Time Series Anomaly Detection [5.935707085640394]
We propose a stacking variational auto-encoder (VAE) model with graph neural networks for the effective and interpretable time-series anomaly detection.
We show that our proposed model outperforms the strong baselines on three public datasets with considerable improvements.
arXiv Detail & Related papers (2021-05-18T09:50:00Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Learning Graph Structures with Transformer for Multivariate Time Series
Anomaly Detection in IoT [11.480824844205864]
This work proposed a novel framework, namely GTA, for multivariate time series anomaly detection by automatically learning a graph structure followed by the graph convolution.
We also devised a novel graph convolution named Influence propagation convolution to model the anomaly information flow between graph nodes.
The experiments on four public anomaly detection benchmarks further demonstrate our approach's superiority over other state-of-the-arts.
arXiv Detail & Related papers (2021-04-08T01:45:28Z) - Laplacian Change Point Detection for Dynamic Graphs [10.556288610354997]
We propose Laplacian Anomaly Detection (LAD) which uses the spectrum of the Laplacian matrix of the graph structure at each snapshot to obtain low dimensional embeddings.
In synthetic experiments, LAD outperforms the state-of-the-art method.
We also evaluate our method on three real dynamic networks: UCI message network, US senate co-sponsorship network and Canadian bill voting network.
arXiv Detail & Related papers (2020-07-02T16:24:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.