Benchmarking AI scientists in omics data-driven biological research
- URL: http://arxiv.org/abs/2505.08341v1
- Date: Tue, 13 May 2025 08:33:54 GMT
- Title: Benchmarking AI scientists in omics data-driven biological research
- Authors: Erpai Luo, Jinmeng Jia, Yifan Xiong, Xiangyu Li, Xiaobo Guo, Baoqi Yu, Lei Wei, Xuegong Zhang,
- Abstract summary: We introduce the Biological AI Scientist Benchmark (BaisBench) to assess AI scientists' ability to generate biological discoveries.<n>BaisBench comprises two tasks: cell type annotation on 31 expert-labeled single-cell datasets, and scientific discovery through answering 198 multiple-choice questions.
- Score: 3.3605177939410713
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rise of large language models and multi-agent systems has sparked growing interest in AI scientists capable of autonomous biological research. However, existing benchmarks either focus on reasoning without data or on data analysis with predefined statistical answers, lacking realistic, data-driven evaluation settings. Here, we introduce the Biological AI Scientist Benchmark (BaisBench), a benchmark designed to assess AI scientists' ability to generate biological discoveries through data analysis and reasoning with external knowledge. BaisBench comprises two tasks: cell type annotation on 31 expert-labeled single-cell datasets, and scientific discovery through answering 198 multiple-choice questions derived from the biological insights of 41 recent single-cell studies. Systematic experiments on state-of-the-art AI scientists and LLM agents showed that while promising, current models still substantially underperform human experts on both tasks. We hope BaisBench will fill this gap and serve as a foundation for advancing and evaluating AI models for scientific discovery. The benchmark can be found at: https://github.com/EperLuo/BaisBench.
Related papers
- Position: Intelligent Science Laboratory Requires the Integration of Cognitive and Embodied AI [98.19195693735487]
We propose the paradigm of Intelligent Science Laboratories (ISLs)<n>ISLs are a multi-layered, closed-loop framework that deeply integrates cognitive and embodied intelligence.<n>We argue that such systems are essential for overcoming the current limitations of scientific discovery.
arXiv Detail & Related papers (2025-06-24T13:31:44Z) - BioDSA-1K: Benchmarking Data Science Agents for Biomedical Research [29.469867701731374]
BioDSA-1K consists of 1,029 hypothesis-centric tasks paired with 1,177 analysis plans.<n>The benchmark enables evaluation along four axes: (1) hypothesis decision accuracy, (2) alignment between evidence and conclusion, (3) correctness of the reasoning process, and (4) executability of the AI-generated analysis code.
arXiv Detail & Related papers (2025-05-22T01:02:21Z) - Towards Artificial Intelligence Research Assistant for Expert-Involved Learning [64.7438151207189]
Large Language Models (LLMs) and Large Multi-Modal Models (LMMs) have emerged as transformative tools in scientific research.<n>We present textbfARtificial textbfIntelligence research assistant for textbfExpert-involved textbfLearning (ARIEL)
arXiv Detail & Related papers (2025-05-03T14:21:48Z) - BixBench: a Comprehensive Benchmark for LLM-based Agents in Computational Biology [0.8061245870721293]
Large Language Models (LLMs) and LLM-based agents show great promise in accelerating scientific research.<n>We present the Bioinformatics Benchmark (BixBench), a dataset comprising over 50 real-world scenarios of practical biological data analysis.<n>We evaluate the performance of two frontier LLMs using a custom agent framework we open source.
arXiv Detail & Related papers (2025-02-28T18:47:57Z) - Causal Representation Learning from Multimodal Biomedical Observations [57.00712157758845]
We develop flexible identification conditions for multimodal data and principled methods to facilitate the understanding of biomedical datasets.<n>Key theoretical contribution is the structural sparsity of causal connections between modalities.<n>Results on a real-world human phenotype dataset are consistent with established biomedical research.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - Automating Exploratory Proteomics Research via Language Models [22.302672656499315]
PROTEUS is a fully automated system for scientific discovery from raw data.
It produces a comprehensive set of research objectives, analysis results and novel biological hypotheses without human intervention.
arXiv Detail & Related papers (2024-11-06T08:16:56Z) - LAB-Bench: Measuring Capabilities of Language Models for Biology Research [1.6312096924271486]
We introduce the Language Agent Biology Benchmark (LAB-Bench)
It is a dataset of over 2,400 multiple choice questions for evaluating AI systems on a range of practical biology research capabilities.
We measure performance of several frontier language models against our benchmark and report results compared to human expert biology researchers.
arXiv Detail & Related papers (2024-07-14T23:52:25Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.<n>BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.<n>It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - Toward a Team of AI-made Scientists for Scientific Discovery from Gene
Expression Data [9.767546641019862]
We introduce a novel framework, a Team of AI-made Scientists (TAIS), designed to streamline the scientific discovery pipeline.
TAIS comprises simulated roles, including a project manager, data engineer, and domain expert, each represented by a Large Language Model (LLM)
These roles collaborate to replicate the tasks typically performed by data scientists, with a specific focus on identifying disease-predictive genes.
arXiv Detail & Related papers (2024-02-15T06:30:12Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.