Automating Exploratory Proteomics Research via Language Models
- URL: http://arxiv.org/abs/2411.03743v1
- Date: Wed, 06 Nov 2024 08:16:56 GMT
- Title: Automating Exploratory Proteomics Research via Language Models
- Authors: Ning Ding, Shang Qu, Linhai Xie, Yifei Li, Zaoqu Liu, Kaiyan Zhang, Yibai Xiong, Yuxin Zuo, Zhangren Chen, Ermo Hua, Xingtai Lv, Youbang Sun, Yang Li, Dong Li, Fuchu He, Bowen Zhou,
- Abstract summary: PROTEUS is a fully automated system for scientific discovery from raw data.
It produces a comprehensive set of research objectives, analysis results and novel biological hypotheses without human intervention.
- Score: 22.302672656499315
- License:
- Abstract: With the development of artificial intelligence, its contribution to science is evolving from simulating a complex problem to automating entire research processes and producing novel discoveries. Achieving this advancement requires both specialized general models grounded in real-world scientific data and iterative, exploratory frameworks that mirror human scientific methodologies. In this paper, we present PROTEUS, a fully automated system for scientific discovery from raw proteomics data. PROTEUS uses large language models (LLMs) to perform hierarchical planning, execute specialized bioinformatics tools, and iteratively refine analysis workflows to generate high-quality scientific hypotheses. The system takes proteomics datasets as input and produces a comprehensive set of research objectives, analysis results, and novel biological hypotheses without human intervention. We evaluated PROTEUS on 12 proteomics datasets collected from various biological samples (e.g. immune cells, tumors) and different sample types (single-cell and bulk), generating 191 scientific hypotheses. These were assessed using both automatic LLM-based scoring on 5 metrics and detailed reviews from human experts. Results demonstrate that PROTEUS consistently produces reliable, logically coherent results that align well with existing literature while also proposing novel, evaluable hypotheses. The system's flexible architecture facilitates seamless integration of diverse analysis tools and adaptation to different proteomics data types. By automating complex proteomics analysis workflows and hypothesis generation, PROTEUS has the potential to considerably accelerate the pace of scientific discovery in proteomics research, enabling researchers to efficiently explore large-scale datasets and uncover biological insights.
Related papers
- CellAgent: An LLM-driven Multi-Agent Framework for Automated Single-cell Data Analysis [35.61361183175167]
Single-cell RNA sequencing (scRNA-seq) data analysis is crucial for biological research.
However, manual manipulation of various tools to achieve desired outcomes can be labor-intensive for researchers.
We introduce CellAgent, an LLM-driven multi-agent framework for the automatic processing and execution of scRNA-seq data analysis tasks.
arXiv Detail & Related papers (2024-07-13T09:14:50Z) - Large Language Models as Biomedical Hypothesis Generators: A Comprehensive Evaluation [15.495976478018264]
Large language models (LLMs) have emerged as a promising tool to revolutionize knowledge interaction.
We construct a dataset of background-hypothesis pairs from biomedical literature, partitioned into training, seen, and unseen test sets.
We assess the hypothesis generation capabilities of top-tier instructed models in zero-shot, few-shot, and fine-tuning settings.
arXiv Detail & Related papers (2024-07-12T02:55:13Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - A Guide to Tracking Phylogenies in Parallel and Distributed Agent-based Evolution Models [0.0]
In silico work with agent-based models provides an opportunity to collect high-quality records of ancestry relationships among simulated agents.
Existing work generally tracks lineages directly, yielding an exact phylogenetic record of evolutionary history.
Post hoc estimation is akin to how bioinformaticians build phylogenies by assessing genetic similarities between organisms.
arXiv Detail & Related papers (2024-05-16T15:27:51Z) - CRISPR-GPT: An LLM Agent for Automated Design of Gene-Editing Experiments [51.41735920759667]
Large Language Models (LLMs) have shown promise in various tasks, but they often lack specific knowledge and struggle to accurately solve biological design problems.
In this work, we introduce CRISPR-GPT, an LLM agent augmented with domain knowledge and external tools to automate and enhance the design process of CRISPR-based gene-editing experiments.
arXiv Detail & Related papers (2024-04-27T22:59:17Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - Toward a Team of AI-made Scientists for Scientific Discovery from Gene
Expression Data [9.767546641019862]
We introduce a novel framework, a Team of AI-made Scientists (TAIS), designed to streamline the scientific discovery pipeline.
TAIS comprises simulated roles, including a project manager, data engineer, and domain expert, each represented by a Large Language Model (LLM)
These roles collaborate to replicate the tasks typically performed by data scientists, with a specific focus on identifying disease-predictive genes.
arXiv Detail & Related papers (2024-02-15T06:30:12Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
The ability to precisely predict protein thermostability is pivotal for various subfields and applications in biochemistry.
We introduce an ESM-assisted efficient approach that integrates protein sequence and structural features to predict the thermostability changes in protein upon single-point mutations.
arXiv Detail & Related papers (2023-12-07T03:25:49Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.