Localization of Impacts on Thin-Walled Structures by Recurrent Neural Networks: End-to-end Learning from Real-World Data
- URL: http://arxiv.org/abs/2505.08362v2
- Date: Mon, 04 Aug 2025 21:17:24 GMT
- Title: Localization of Impacts on Thin-Walled Structures by Recurrent Neural Networks: End-to-end Learning from Real-World Data
- Authors: Alexander Humer, Lukas Grasboeck, Ayech Benjeddou,
- Abstract summary: Impacts on thin-walled structures excite Lamb waves, which can be measured with piezoelectric sensors.<n>We propose to use recurrent neural networks (RNNs) to estimate impact positions end-to-end, directly from sequential sensor data.<n>Our results show remarkable accuracy in estimating impact positions, even with a comparatively small dataset.
- Score: 45.9982965995401
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Today, machine learning is ubiquitous, and structural health monitoring (SHM) is no exception. Specifically, we address the problem of impact localization on shell-like structures, where knowledge of impact locations aids in assessing structural integrity. Impacts on thin-walled structures excite Lamb waves, which can be measured with piezoelectric sensors. Their dispersive characteristics make it difficult to detect and localize impacts by conventional methods. In the present contribution, we explore the localization of impacts using neural networks. In particular, we propose to use recurrent neural networks (RNNs) to estimate impact positions end-to-end, i.e., directly from sequential sensor data. We deal with comparatively long sequences of thousands of samples, since high sampling rate are needed to accurately capture elastic waves. For this reason, the proposed approach builds upon Gated Recurrent Units (GRUs), which are less prone to vanishing gradients as compared to conventional RNNs. Quality and quantity of data are crucial when training neural networks. Often, synthetic data is used, which inevitably introduces a reality gap. Here, by contrast, we train our networks using physical data from experiments, which requires automation to handle the large number of experiments needed. For this purpose, a robot is used to drop steel balls onto an aluminum plate equipped with piezoceramic sensors. Our results show remarkable accuracy in estimating impact positions, even with a comparatively small dataset.
Related papers
- CNN-Based Structural Damage Detection using Time-Series Sensor Data [0.0]
This research introduces an innovative approach to structural damage detection, utilizing a new Conal Neural Network (CNN) algorithm.
Time series data are divided into two categories using the proposed neural network: undamaged and damaged.
The outcomes show that the new CNN algorithm is very accurate in spotting structural degradation in the examined structure.
arXiv Detail & Related papers (2023-11-07T11:57:33Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
This study takes advantage of recent advances in machine learning to establish a physics-based data analytic platform.
Two logics, namely the direct inversion and physics-informed neural networks (PINNs), are explored.
arXiv Detail & Related papers (2023-01-06T05:01:05Z) - Robustness of Physics-Informed Neural Networks to Noise in Sensor Data [0.0]
PINNs have been shown to be an effective way of incorporating physics-based domain knowledge into neural network models.
In this work, we conduct a preliminary investigation of the robustness of physics-informed neural networks to the magnitude of noise in the data.
arXiv Detail & Related papers (2022-11-22T06:24:43Z) - Impact of spiking neurons leakages and network recurrences on
event-based spatio-temporal pattern recognition [0.0]
Spiking neural networks coupled with neuromorphic hardware and event-based sensors are getting increased interest for low-latency and low-power inference at the edge.
We explore the impact of synaptic and membrane leakages in spiking neurons.
arXiv Detail & Related papers (2022-11-14T21:34:02Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
This paper studies the indoor localisation of WiFi devices based on a commodity chipset and standard channel sounding.
We present a novel shallow neural network (SNN) in which features are extracted from the channel state information corresponding to WiFi subcarriers received on different antennas.
arXiv Detail & Related papers (2020-10-16T22:48:29Z) - Inductive Graph Neural Networks for Spatiotemporal Kriging [13.666589510218738]
We develop an inductive graph neural network model to recover data for unsampled sensors on a network/graph structure.
Empirical results on several real-worldtemporal datasets demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2020-06-13T01:23:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.