Adaptive Diffusion Policy Optimization for Robotic Manipulation
- URL: http://arxiv.org/abs/2505.08376v1
- Date: Tue, 13 May 2025 09:21:45 GMT
- Title: Adaptive Diffusion Policy Optimization for Robotic Manipulation
- Authors: Huiyun Jiang, Zhuang Yang,
- Abstract summary: Adam-based Diffusion Policy Optimization (ADPO) is a fast algorithmic framework containing best practices for fine-tuning diffusion-based polices in robotic control tasks.<n>We conduct extensive experiments on standard robotic control tasks to test ADPO, where, particularly, six popular diffusion-based RL methods are provided as benchmark methods.
- Score: 10.865448640073911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have shown the great potential of diffusion models in improving reinforcement learning (RL) by modeling complex policies, expressing a high degree of multi-modality, and efficiently handling high-dimensional continuous control tasks. However, there is currently limited research on how to optimize diffusion-based polices (e.g., Diffusion Policy) fast and stably. In this paper, we propose an Adam-based Diffusion Policy Optimization (ADPO), a fast algorithmic framework containing best practices for fine-tuning diffusion-based polices in robotic control tasks using the adaptive gradient descent method in RL. Adaptive gradient method is less studied in training RL, let alone diffusion-based policies. We confirm that ADPO outperforms other diffusion-based RL methods in terms of overall effectiveness for fine-tuning on standard robotic tasks. Concretely, we conduct extensive experiments on standard robotic control tasks to test ADPO, where, particularly, six popular diffusion-based RL methods are provided as benchmark methods. Experimental results show that ADPO acquires better or comparable performance than the baseline methods. Finally, we systematically analyze the sensitivity of multiple hyperparameters in standard robotics tasks, providing guidance for subsequent practical applications. Our video demonstrations are released in https://github.com/Timeless-lab/ADPO.git.
Related papers
- Divergence Minimization Preference Optimization for Diffusion Model Alignment [58.651951388346525]
Divergence Minimization Preference Optimization (DMPO) is a principled method for aligning diffusion models by minimizing reverse KL divergence.<n>Our results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques.<n>DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
arXiv Detail & Related papers (2025-07-10T07:57:30Z) - A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning [61.403275660120606]
Reinforcement learning (RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives.<n>We propose leave-one-out PPO (LOOP), a novel RL for diffusion fine-tuning method.<n>Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
arXiv Detail & Related papers (2025-03-02T13:43:53Z) - Diffusion Policy Policy Optimization [37.04382170999901]
Diffusion Policy Optimization, DPPO, is an algorithmic framework for fine-tuning diffusion-based policies.<n>DPO achieves the strongest overall performance and efficiency for fine-tuning in common benchmarks.<n>We show that DPPO takes advantage of unique synergies between RL fine-tuning and the diffusion parameterization.
arXiv Detail & Related papers (2024-09-01T02:47:50Z) - The Hitchhiker's Guide to Human Alignment with *PO [43.4130314879284]
We focus on identifying the algorithm that, while being performant, is simultaneously more robust to varying hyper parameters.
Our analysis reveals that the widely adopted DPO method consistently produces lengthy responses of inferior quality.
Motivated by these findings, we propose an embarrassingly simple extension to the DPO algorithm, LN-DPO, resulting in more concise responses without sacrificing quality.
arXiv Detail & Related papers (2024-07-21T17:35:20Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality.<n>We propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO)<n>Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions.<n>We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions.
arXiv Detail & Related papers (2024-05-25T10:45:46Z) - DPO: Differential reinforcement learning with application to optimal configuration search [3.2857981869020327]
Reinforcement learning with continuous state and action spaces remains one of the most challenging problems within the field.
We propose the first differential RL framework that can handle settings with limited training samples and short-length episodes.
arXiv Detail & Related papers (2024-04-24T03:11:12Z) - Score Regularized Policy Optimization through Diffusion Behavior [25.926641622408752]
Recent developments in offline reinforcement learning have uncovered the immense potential of diffusion modeling.
We propose to extract an efficient deterministic inference policy from critic models and pretrained diffusion behavior models.
Our method boosts action sampling speed by more than 25 times compared with various leading diffusion-based methods in locomotion tasks.
arXiv Detail & Related papers (2023-10-11T08:31:26Z) - Policy Representation via Diffusion Probability Model for Reinforcement
Learning [67.56363353547775]
We build a theoretical foundation of policy representation via the diffusion probability model.
We present a convergence guarantee for diffusion policy, which provides a theory to understand the multimodality of diffusion policy.
We propose the DIPO which is an implementation for model-free online RL with DIffusion POlicy.
arXiv Detail & Related papers (2023-05-22T15:23:41Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
Offline reinforcement learning (RL) aims to learn an optimal policy using a previously collected static dataset.
We introduce Diffusion Q-learning (Diffusion-QL) that utilizes a conditional diffusion model to represent the policy.
We show that our method can achieve state-of-the-art performance on the majority of the D4RL benchmark tasks.
arXiv Detail & Related papers (2022-08-12T09:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.