Learning Treatment Allocations with Risk Control Under Partial Identifiability
- URL: http://arxiv.org/abs/2505.08378v1
- Date: Tue, 13 May 2025 09:22:18 GMT
- Title: Learning Treatment Allocations with Risk Control Under Partial Identifiability
- Authors: Sofia Ek, Dave Zachariah,
- Abstract summary: Learning beneficial treatment allocations for a patient population is an important problem in precision medicine.<n>We propose a certifiable learning method that controls the treatment risk with finite samples in the partially identified setting.
- Score: 6.875312133832077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning beneficial treatment allocations for a patient population is an important problem in precision medicine. Many treatments come with adverse side effects that are not commensurable with their potential benefits. Patients who do not receive benefits after such treatments are thereby subjected to unnecessary harm. This is a `treatment risk' that we aim to control when learning beneficial allocations. The constrained learning problem is challenged by the fact that the treatment risk is not in general identifiable using either randomized trial or observational data. We propose a certifiable learning method that controls the treatment risk with finite samples in the partially identified setting. The method is illustrated using both simulated and real data.
Related papers
- Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner [72.20769640318969]
Estimating causal quantities from observational data is crucial for understanding the safety and effectiveness of medical treatments.<n>Medical practitioners require not only estimating averaged causal quantities, but also understanding the randomness of the treatment effect as a random variable.<n>This randomness is referred to as aleatoric uncertainty and is necessary for understanding the probability of benefit from treatment or quantiles of the treatment effect.
arXiv Detail & Related papers (2024-11-05T18:14:49Z) - The Blessings of Multiple Treatments and Outcomes in Treatment Effect
Estimation [53.81860494566915]
Existing studies leveraged proxy variables or multiple treatments to adjust for confounding bias.
In many real-world scenarios, there is greater interest in studying the effects on multiple outcomes.
We show that parallel studies of multiple outcomes involved in this setting can assist each other in causal identification.
arXiv Detail & Related papers (2023-09-29T14:33:48Z) - Accounting For Informative Sampling When Learning to Forecast Treatment
Outcomes Over Time [66.08455276899578]
We show that informative sampling can prohibit accurate estimation of treatment outcomes if not properly accounted for.
We present a general framework for learning treatment outcomes in the presence of informative sampling using inverse intensity-weighting.
We propose a novel method, TESAR-CDE, that instantiates this framework using Neural CDEs.
arXiv Detail & Related papers (2023-06-07T08:51:06Z) - To Impute or not to Impute? -- Missing Data in Treatment Effect
Estimation [84.76186111434818]
We identify a new missingness mechanism, which we term mixed confounded missingness (MCM), where some missingness determines treatment selection and other missingness is determined by treatment selection.
We show that naively imputing all data leads to poor performing treatment effects models, as the act of imputation effectively removes information necessary to provide unbiased estimates.
Our solution is selective imputation, where we use insights from MCM to inform precisely which variables should be imputed and which should not.
arXiv Detail & Related papers (2022-02-04T12:08:31Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
Since the average treatment effect measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population.
In this paper we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution.
Some bounds can also be interpreted as summarizing a complex CATE function into a single metric and are of interest independently of being a bound.
arXiv Detail & Related papers (2022-01-15T17:21:26Z) - BITES: Balanced Individual Treatment Effect for Survival data [0.0]
Estimating the effects of interventions on patient outcome is one of the key aspects of personalized medicine.
Time-to-event data is rarely used for treatment optimization.
We suggest an approach named BITES, which combines a treatment-specific semi-parametric Cox loss with a treatment-balanced deep neural network.
arXiv Detail & Related papers (2022-01-05T10:39:31Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Offline reinforcement learning with uncertainty for treatment strategies
in sepsis [0.0]
We present a novel application of reinforcement learning in which we identify optimal recommendations for sepsis treatment from data.
Rather than a single recommendation, our method can present several treatment options.
We examine learned policies and discover that reinforcement learning is biased against aggressive intervention due to the confounding relationship between mortality and level of treatment received.
arXiv Detail & Related papers (2021-07-09T15:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.