論文の概要: An integrated language-vision foundation model for conversational diagnostics and triaging in primary eye care
- arxiv url: http://arxiv.org/abs/2505.08414v1
- Date: Tue, 13 May 2025 10:13:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.520379
- Title: An integrated language-vision foundation model for conversational diagnostics and triaging in primary eye care
- Title(参考訳): プライマリアイケアにおける会話診断とトリアージのための統合言語ビジョン基盤モデル
- Authors: Zhi Da Soh, Yang Bai, Kai Yu, Yang Zhou, Xiaofeng Lei, Sahil Thakur, Zann Lee, Lee Ching Linette Phang, Qingsheng Peng, Can Can Xue, Rachel Shujuan Chong, Quan V. Hoang, Lavanya Raghavan, Yih Chung Tham, Charumathi Sabanayagam, Wei-Chi Wu, Ming-Chih Ho, Jiangnan He, Preeti Gupta, Ecosse Lamoureux, Seang Mei Saw, Vinay Nangia, Songhomitra Panda-Jonas, Jie Xu, Ya Xing Wang, Xinxing Xu, Jost B. Jonas, Tien Yin Wong, Rick Siow Mong Goh, Yong Liu, Ching-Yu Cheng,
- Abstract要約: 本稿では,多機能基盤モデルであるMeta-EyeFMについて述べる。
低位適応を用いて、VFMを微調整し、眼疾患や全身疾患を検出し、眼疾患の重症度を識別し、一般的な眼症状を同定した。
このモデルは、ファンス画像を適切なVFMにルーティングする際の100%の精度を達成し、疾患検出の精度は15ドル82.2%、重度判別の精度は89%、符号識別の精度は76%であった。
- 参考スコア(独自算出の注目度): 24.15573443399247
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Current deep learning models are mostly task specific and lack a user-friendly interface to operate. We present Meta-EyeFM, a multi-function foundation model that integrates a large language model (LLM) with vision foundation models (VFMs) for ocular disease assessment. Meta-EyeFM leverages a routing mechanism to enable accurate task-specific analysis based on text queries. Using Low Rank Adaptation, we fine-tuned our VFMs to detect ocular and systemic diseases, differentiate ocular disease severity, and identify common ocular signs. The model achieved 100% accuracy in routing fundus images to appropriate VFMs, which achieved $\ge$ 82.2% accuracy in disease detection, $\ge$ 89% in severity differentiation, $\ge$ 76% in sign identification. Meta-EyeFM was 11% to 43% more accurate than Gemini-1.5-flash and ChatGPT-4o LMMs in detecting various eye diseases and comparable to an ophthalmologist. This system offers enhanced usability and diagnostic performance, making it a valuable decision support tool for primary eye care or an online LLM for fundus evaluation.
- Abstract(参考訳): 現在のディープラーニングモデルは、主にタスク固有であり、操作するユーザフレンドリなインターフェースがない。
本稿では,多機能基盤モデルであるMeta-EyeFMについて述べる。
Meta-EyeFMはルーティング機構を利用して、テキストクエリに基づいたタスク固有の正確な分析を可能にする。
低位適応を用いて、VFMを微調整し、眼疾患や全身疾患を検出し、眼疾患の重症度を識別し、一般的な眼症状を同定した。
このモデルは、ファンス画像を適切なVFMにルーティングする際の100%の精度を達成し、疾患検出の精度が$$\ge$82.2%、重度判別の精度が$\ge$89%、符号識別の精度が$\ge$76%に達した。
Meta-EyeFMはGemini-1.5-flashやChatGPT-4o LMMよりも11%から43%精度が高く、眼科医と同等であった。
本システムはユーザビリティと診断性能を向上し,プライマリアイケアに有用な意思決定支援ツールや,ベース評価にオンラインLLMを提供する。
関連論文リスト
- EyecareGPT: Boosting Comprehensive Ophthalmology Understanding with Tailored Dataset, Benchmark and Model [51.66031028717933]
Med-LVLM(Med-LVLM)は、医療において重要な可能性を示す。
現在、知的眼科診断は、(i)データ、(ii)ベンチマーク、(iii)モデルという3つの大きな課題に直面している。
我々は、前述の3つの課題に対処するEyecare Kitを提案する。
論文 参考訳(メタデータ) (2025-04-18T12:09:15Z) - Is an Ultra Large Natural Image-Based Foundation Model Superior to a Retina-Specific Model for Detecting Ocular and Systemic Diseases? [15.146396276161937]
RETFoundおよびDINOv2モデルは眼疾患検出および全身性疾患予知タスクのために評価された。
RETFoundは、心不全、梗塞、虚血性脳梗塞の予測において、すべてのDINOv2モデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2025-02-10T09:31:39Z) - LMOD: A Large Multimodal Ophthalmology Dataset and Benchmark for Large Vision-Language Models [38.78576472811659]
大規模視覚言語モデル(LVLM)は、解剖情報を理解し、眼疾患を診断し、解釈と追跡計画の作成を支援する可能性がある。
我々は、クローズドソース、オープンソース、医療ドメインの13の最先端のLVLM代表をベンチマークした。
その結果,眼科領域では他の領域と比較してLVLMが有意に低下した。
論文 参考訳(メタデータ) (2024-10-02T14:57:58Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - VisionFM: a Multi-Modal Multi-Task Vision Foundation Model for
Generalist Ophthalmic Artificial Intelligence [27.92420837559191]
VisionFMは560,457人の眼科画像340万枚を事前訓練した基礎モデルである。
事前トレーニングの後、VisionFMは複数の眼科人工知能(AI)応用を育成する基盤を提供する。
VisionFMの一般知能は、12の一般的な眼科疾患を共同診断する際に、基礎的および中間的なレベルの眼科医より優れていた。
論文 参考訳(メタデータ) (2023-10-08T03:40:14Z) - Reliable Multimodality Eye Disease Screening via Mixture of Student's t
Distributions [49.4545260500952]
眼疾患スクリーニングのための新しい多モード顕在核融合パイプラインEyeMoStについて紹介する。
本モデルでは,一様性に対する局所的不確実性と融合モードに対する大域的不確実性の両方を推定し,信頼性の高い分類結果を生成する。
パブリックデータセットと社内データセットの両方に関する実験結果から、我々のモデルは現在の手法よりも信頼性が高いことが判明した。
論文 参考訳(メタデータ) (2023-03-17T06:18:16Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Efficient Screening of Diseased Eyes based on Fundus Autofluorescence
Images using Support Vector Machine [0.12189422792863448]
さまざまな視力障害は、目の焦点領域の地理的縮縮(GA)と関連している。
現在の臨床では、眼科医は、眼底蛍光(FAF)画像に基づいて、このようなGAの存在を手動で検出する。
健康眼と病眼をアルゴリズムで識別し,眼科医のみからの入力を限定したスクリーニングステップを提案する。
論文 参考訳(メタデータ) (2021-04-17T11:54:34Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。