LCES: Zero-shot Automated Essay Scoring via Pairwise Comparisons Using Large Language Models
- URL: http://arxiv.org/abs/2505.08498v1
- Date: Tue, 13 May 2025 12:26:16 GMT
- Title: LCES: Zero-shot Automated Essay Scoring via Pairwise Comparisons Using Large Language Models
- Authors: Takumi Shibata, Yuichi Miyamura,
- Abstract summary: We propose Comparative Essay Scoring (LCES), a method that formulates AES as a pairwise comparison task.<n>Specifically, we instruct LLMs to judge which of two essays is better, collect many such comparisons, and convert them into continuous scores.<n>Experiments using AES benchmark datasets show that LCES outperforms conventional zero-shot methods in accuracy while maintaining computational efficiency.
- Score: 0.46040036610482665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models (LLMs) have enabled zero-shot automated essay scoring (AES), providing a promising way to reduce the cost and effort of essay scoring in comparison with manual grading. However, most existing zero-shot approaches rely on LLMs to directly generate absolute scores, which often diverge from human evaluations owing to model biases and inconsistent scoring. To address these limitations, we propose LLM-based Comparative Essay Scoring (LCES), a method that formulates AES as a pairwise comparison task. Specifically, we instruct LLMs to judge which of two essays is better, collect many such comparisons, and convert them into continuous scores. Considering that the number of possible comparisons grows quadratically with the number of essays, we improve scalability by employing RankNet to efficiently transform LLM preferences into scalar scores. Experiments using AES benchmark datasets show that LCES outperforms conventional zero-shot methods in accuracy while maintaining computational efficiency. Moreover, LCES is robust across different LLM backbones, highlighting its applicability to real-world zero-shot AES.
Related papers
- SPARC: Score Prompting and Adaptive Fusion for Zero-Shot Multi-Label Recognition in Vision-Language Models [74.40683913645731]
Zero-shot multi-label recognition (MLR) with Vision-Language Models (VLMs) faces significant challenges without training data, model tuning, or architectural modifications.<n>Our work proposes a novel solution treating VLMs as black boxes, leveraging scores without training data or ground truth.<n>Analysis of these prompt scores reveals VLM biases and AND''/OR' signal ambiguities, notably that maximum scores are surprisingly suboptimal compared to second-highest scores.
arXiv Detail & Related papers (2025-02-24T07:15:05Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - Varco Arena: A Tournament Approach to Reference-Free Benchmarking Large Language Models [0.29687381456164]
VARCO Arena is a novel, cost-effective, and robust benchmarking approach for large language models.<n>Our results demonstrate that VARCO Arena not only produces reliable LLM rankings but also provides a scalable, adaptable solution for qualitative evaluation.
arXiv Detail & Related papers (2024-11-02T15:23:28Z) - Is GPT-4 Alone Sufficient for Automated Essay Scoring?: A Comparative Judgment Approach Based on Rater Cognition [0.09208007322096534]
Large Language Models (LLMs) have shown promise in Automated Essay Scoring (AES)
LLMs have shown promise in AES, but their zero-shot and few-shot performance often falls short compared to state-of-the-art models and human raters.
This study proposes a novel approach combining LLMs and Comparative Judgment (CJ) for AES, using zero-shot prompting to choose between two essays.
arXiv Detail & Related papers (2024-07-08T08:37:00Z) - Aligning Language Models with Demonstrated Feedback [58.834937450242975]
Demonstration ITerated Task Optimization (DITTO) directly aligns language model outputs to a user's demonstrated behaviors.<n>We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts.
arXiv Detail & Related papers (2024-06-02T23:13:56Z) - Enhancing Low-Resource LLMs Classification with PEFT and Synthetic Data [36.09359953556684]
Large Language Models (LLMs) operating in 0-shot or few-shot settings achieve competitive results in Text Classification tasks.
In-Context Learning (ICL) typically achieves better accuracy than the 0-shot setting, but it pays in terms of efficiency, due to the longer input prompt.
arXiv Detail & Related papers (2024-04-03T03:24:19Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - LLM Comparative Assessment: Zero-shot NLG Evaluation through Pairwise
Comparisons using Large Language Models [55.60306377044225]
Large language models (LLMs) have enabled impressive zero-shot capabilities across various natural language tasks.
This paper explores two options for exploiting the emergent abilities of LLMs for zero-shot NLG assessment.
For moderate-sized open-source LLMs, such as FlanT5 and Llama2-chat, comparative assessment is superior to prompt scoring.
arXiv Detail & Related papers (2023-07-15T22:02:12Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
We propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits.
Most LLMs struggle on SummEdits, with performance close to random chance.
The best-performing model, GPT-4, is still 8% below estimated human performance.
arXiv Detail & Related papers (2023-05-23T21:50:06Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.