TrialMatchAI: An End-to-End AI-powered Clinical Trial Recommendation System to Streamline Patient-to-Trial Matching
- URL: http://arxiv.org/abs/2505.08508v1
- Date: Tue, 13 May 2025 12:39:06 GMT
- Title: TrialMatchAI: An End-to-End AI-powered Clinical Trial Recommendation System to Streamline Patient-to-Trial Matching
- Authors: Majd Abdallah, Sigve Nakken, Mariska Bierkens, Johanna Galvis, Alexis Groppi, Slim Karkar, Lana Meiqari, Maria Alexandra Rujano, Steve Canham, Rodrigo Dienstmann, Remond Fijneman, Eivind Hovig, Gerrit Meijer, Macha Nikolski,
- Abstract summary: We present TrialMatchAI, an AI-powered recommendation system that automates patient-to-trial matching.<n>Built on fine-tuned, open-source large language models, TrialMatchAI ensures transparency and maintains a lightweight deployment footprint.<n>In real-world validation, 92 percent of oncology patients had at least one relevant trial retrieved within the top 20 recommendations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Patient recruitment remains a major bottleneck in clinical trials, calling for scalable and automated solutions. We present TrialMatchAI, an AI-powered recommendation system that automates patient-to-trial matching by processing heterogeneous clinical data, including structured records and unstructured physician notes. Built on fine-tuned, open-source large language models (LLMs) within a retrieval-augmented generation framework, TrialMatchAI ensures transparency and reproducibility and maintains a lightweight deployment footprint suitable for clinical environments. The system normalizes biomedical entities, retrieves relevant trials using a hybrid search strategy combining lexical and semantic similarity, re-ranks results, and performs criterion-level eligibility assessments using medical Chain-of-Thought reasoning. This pipeline delivers explainable outputs with traceable decision rationales. In real-world validation, 92 percent of oncology patients had at least one relevant trial retrieved within the top 20 recommendations. Evaluation across synthetic and real clinical datasets confirmed state-of-the-art performance, with expert assessment validating over 90 percent accuracy in criterion-level eligibility classification, particularly excelling in biomarker-driven matches. Designed for modularity and privacy, TrialMatchAI supports Phenopackets-standardized data, enables secure local deployment, and allows seamless replacement of LLM components as more advanced models emerge. By enhancing efficiency and interpretability and offering lightweight, open-source deployment, TrialMatchAI provides a scalable solution for AI-driven clinical trial matching in precision medicine.
Related papers
- Systematic Literature Review on Clinical Trial Eligibility Matching [0.24554686192257422]
Review highlights how explainable AI and standardized ontology can bolster clinician trust and broaden adoption.<n>Further research into advanced semantic and temporal representations, expanded data integration, and rigorous prospective evaluations is necessary to fully realize the transformative potential of NLP in clinical trial recruitment.
arXiv Detail & Related papers (2025-03-02T11:45:50Z) - End-To-End Clinical Trial Matching with Large Language Models [0.6151041580858937]
We present an end-to-end pipeline for clinical trial matching using Large Language Models (LLMs)
Our approach identifies relevant candidate trials in 93.3% of cases and achieves a preliminary accuracy of 88.0%.
Our fully end-to-end pipeline can operate autonomously or with human supervision and is not restricted to oncology.
arXiv Detail & Related papers (2024-07-18T12:36:26Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Zero-Shot Clinical Trial Patient Matching with LLMs [40.31971412825736]
Large language models (LLMs) offer a promising solution to automated screening.
We design an LLM-based system which, given a patient's medical history as unstructured clinical text, evaluates whether that patient meets a set of inclusion criteria.
Our system achieves state-of-the-art scores on the n2c2 2018 cohort selection benchmark.
arXiv Detail & Related papers (2024-02-05T00:06:08Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - AutoTrial: Prompting Language Models for Clinical Trial Design [53.630479619856516]
We present a method named AutoTrial to aid the design of clinical eligibility criteria using language models.
Experiments on over 70K clinical trials verify that AutoTrial generates high-quality criteria texts.
arXiv Detail & Related papers (2023-05-19T01:04:16Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching [70.08786840301435]
We propose CrOss-Modal PseudO-SiamEse network (COMPOSE) to address these challenges for patient-trial matching.
Experiment results show COMPOSE can reach 98.0% AUC on patient-criteria matching and 83.7% accuracy on patient-trial matching.
arXiv Detail & Related papers (2020-06-15T21:01:33Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.