Dynamic Snake Upsampling Operater and Boundary-Skeleton Weighted Loss for Tubular Structure Segmentation
- URL: http://arxiv.org/abs/2505.08525v2
- Date: Fri, 23 May 2025 18:28:14 GMT
- Title: Dynamic Snake Upsampling Operater and Boundary-Skeleton Weighted Loss for Tubular Structure Segmentation
- Authors: Yiqi Chen, Ganghai Huang, Sheng Zhang, Jianglin Dai,
- Abstract summary: This paper introduces a dynamic snake upsampling operator and a boundary-skeleton weighted loss tailored for topological tubular structures.<n> Experiments across various domain datasets and backbone networks show that this plug-and-play dynamic snake upsampling operator and boundary-skeleton weighted loss boost both pixel-wise segmentation accuracy and topological consistency of results.
- Score: 5.949900966039577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of tubular topological structures (e.g., fissures and vasculature) is critical in various fields to guarantee dependable downstream quantitative analysis and modeling. However, in dense prediction tasks such as semantic segmentation and super-resolution, conventional upsampling operators cannot accommodate the slenderness of tubular structures and the curvature of morphology. This paper introduces a dynamic snake upsampling operators and a boundary-skeleton weighted loss tailored for topological tubular structures. Specifically, we design a snake upsampling operators based on an adaptive sampling domain, which dynamically adjusts the sampling stride according to the feature map and selects a set of subpixel sampling points along the serpentine path, enabling more accurate subpixel-level feature recovery for tubular structures. Meanwhile, we propose a skeleton-to-boundary increasing weighted loss that trades off main body and boundary weight allocation based on mask class ratio and distance field, preserving main body overlap while enhancing focus on target topological continuity and boundary alignment precision. Experiments across various domain datasets and backbone networks show that this plug-and-play dynamic snake upsampling operator and boundary-skeleton weighted loss boost both pixel-wise segmentation accuracy and topological consistency of results.
Related papers
- Shape-aware Sampling Matters in the Modeling of Multi-Class Tubular Structures [11.265651259708497]
Deep learning methods enable automated shape modeling by prioritizing volumetric overlap accuracy.<n>The inherent complexity of fine-grained semantic tubular shapes is not fully emphasized by overlap accuracy, resulting in reduced topological preservation.<n>We propose the Shapeaware Sampling (SAS), which optimize patchsize allocation for online sampling and extracts a topology-preserved skeletal representation for the objective function.
arXiv Detail & Related papers (2025-06-14T08:20:08Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.<n>Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.<n>Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - Mapping the Edge of Chaos: Fractal-Like Boundaries in The Trainability of Decoder-Only Transformer Models [0.0]
Recent evidence from miniature neural networks suggests that the boundary separating these outcomes displays fractal characteristics.<n>This study extends them to medium-sized, decoder-only transformer architectures by employing a more consistent convergence measure.<n>The results show that the trainability frontier is not a simple threshold; rather, it forms a self-similar yet seemingly random structure at multiple scales.
arXiv Detail & Related papers (2025-01-08T05:24:11Z) - Network scaling and scale-driven loss balancing for intelligent poroelastography [2.665036498336221]
A deep learning framework is developed for multiscale characterization of poroelastic media from full waveform data.
Two major challenges impede direct application of existing state-of-the-art techniques for this purpose.
We propose the idea of emphnetwork scaling where the neural property maps are constructed by unit shape functions composed into a scaling layer.
arXiv Detail & Related papers (2024-10-27T23:06:29Z) - Enhancing Boundary Segmentation for Topological Accuracy with Skeleton-based Methods [7.646983689651424]
Topological consistency plays a crucial role in the task of boundary segmentation for reticular images.
We propose the Skea-Topo Aware loss, which is a novel loss function that takes into account the shape of each object and topological significance of the pixels.
Experiments prove that our method improves topological consistency by up to 7 points in VI compared to 13 state-of-art methods.
arXiv Detail & Related papers (2024-04-29T09:27:31Z) - Curve Your Attention: Mixed-Curvature Transformers for Graph
Representation Learning [77.1421343649344]
We propose a generalization of Transformers towards operating entirely on the product of constant curvature spaces.
We also provide a kernelized approach to non-Euclidean attention, which enables our model to run in time and memory cost linear to the number of nodes and edges.
arXiv Detail & Related papers (2023-09-08T02:44:37Z) - Dynamic Snake Convolution based on Topological Geometric Constraints for
Tubular Structure Segmentation [12.081234339680456]
We use this knowledge to guide our DSCNet to simultaneously enhance perception in three stages: feature extraction, feature fusion, and loss constraint.
Experiments on 2D and 3D datasets show that our DSCNet provides better accuracy and continuity on the tubular structure segmentation task compared with several methods.
arXiv Detail & Related papers (2023-07-17T10:55:58Z) - Recurrent Generic Contour-based Instance Segmentation with Progressive
Learning [111.31166268300817]
We propose a novel deep network architecture, i.e., PolySnake, for generic contour-based instance segmentation.
Motivated by the classic Snake algorithm, the proposed PolySnake achieves superior and robust segmentation performance.
arXiv Detail & Related papers (2023-01-21T05:34:29Z) - Predicting Loose-Fitting Garment Deformations Using Bone-Driven Motion
Networks [63.596602299263935]
We present a learning algorithm that uses bone-driven motion networks to predict the deformation of loose-fitting garment meshes at interactive rates.
We show that our method outperforms state-of-the-art methods in terms of prediction accuracy of mesh deformations by about 20% in RMSE and 10% in Hausdorff distance and STED.
arXiv Detail & Related papers (2022-05-03T07:54:39Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
We present a novel boundary-aware loss term for semantic segmentation using an inverse-transformation network.
This plug-in loss term complements the cross-entropy loss in capturing boundary transformations.
We analyze the quantitative and qualitative effects of our loss function on three indoor and outdoor segmentation benchmarks.
arXiv Detail & Related papers (2021-04-06T18:52:45Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
Given two aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries.
This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management.
We present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures.
arXiv Detail & Related papers (2020-10-12T13:26:30Z) - ProAlignNet : Unsupervised Learning for Progressively Aligning Noisy
Contours [12.791313859673187]
"ProAlignNet" accounts for large scale misalignments and complex transformations between the contour shapes.
It learns by training with a novel loss function which is derived an upperbound of a proximity-sensitive and local shape-dependent similarity metric.
In two real-world applications, the proposed models consistently perform superior to state-of-the-art methods.
arXiv Detail & Related papers (2020-05-23T14:56:14Z) - Deep Semantic Matching with Foreground Detection and Cycle-Consistency [103.22976097225457]
We address weakly supervised semantic matching based on a deep network.
We explicitly estimate the foreground regions to suppress the effect of background clutter.
We develop cycle-consistent losses to enforce the predicted transformations across multiple images to be geometrically plausible and consistent.
arXiv Detail & Related papers (2020-03-31T22:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.