Enhancing Boundary Segmentation for Topological Accuracy with Skeleton-based Methods
- URL: http://arxiv.org/abs/2404.18539v2
- Date: Tue, 7 May 2024 13:55:57 GMT
- Title: Enhancing Boundary Segmentation for Topological Accuracy with Skeleton-based Methods
- Authors: Chuni Liu, Boyuan Ma, Xiaojuan Ban, Yujie Xie, Hao Wang, Weihua Xue, Jingchao Ma, Ke Xu,
- Abstract summary: Topological consistency plays a crucial role in the task of boundary segmentation for reticular images.
We propose the Skea-Topo Aware loss, which is a novel loss function that takes into account the shape of each object and topological significance of the pixels.
Experiments prove that our method improves topological consistency by up to 7 points in VI compared to 13 state-of-art methods.
- Score: 7.646983689651424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topological consistency plays a crucial role in the task of boundary segmentation for reticular images, such as cell membrane segmentation in neuron electron microscopic images, grain boundary segmentation in material microscopic images and road segmentation in aerial images. In these fields, topological changes in segmentation results have a serious impact on the downstream tasks, which can even exceed the misalignment of the boundary itself. To enhance the topology accuracy in segmentation results, we propose the Skea-Topo Aware loss, which is a novel loss function that takes into account the shape of each object and topological significance of the pixels. It consists of two components. First, a skeleton-aware weighted loss improves the segmentation accuracy by better modeling the object geometry with skeletons. Second, a boundary rectified term effectively identifies and emphasizes topological critical pixels in the prediction errors using both foreground and background skeletons in the ground truth and predictions. Experiments prove that our method improves topological consistency by up to 7 points in VI compared to 13 state-of-art methods, based on objective and subjective assessments across three different boundary segmentation datasets. The code is available at https://github.com/clovermini/Skea_topo.
Related papers
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - BuyTheDips: PathLoss for improved topology-preserving deep
learning-based image segmentation [1.8899300124593648]
We propose a new deep image segmentation method which relies on a new leakage loss: the Pathloss.
Our method outperforms state-of-the-art topology-aware methods on two representative datasets of different natures.
arXiv Detail & Related papers (2022-07-23T07:19:30Z) - PNM: Pixel Null Model for General Image Segmentation [17.971090313814447]
We present a prior model that weights each pixel according to its probability of being correctly classified by a random segmenter.
Experiments on semantic, instance, and panoptic segmentation tasks over three datasets confirm that PNM consistently improves the segmentation quality.
We propose a new metric, textitPNM IoU, which perceives the boundary sharpness and better reflects the model segmentation performance in error-prone regions.
arXiv Detail & Related papers (2022-03-13T15:17:41Z) - Topology-Preserving Segmentation Network: A Deep Learning Segmentation
Framework for Connected Component [7.95119530218428]
In medical imaging, the topology of the structure, such as the kidney or lung, is usually known.
A it topology-preserving segmentation network (TPSN) is trained to give an accurate segmentation result.
TPSN is a deformation-based model that yields a deformation map through a UNet.
A multi-scale TPSN is developed in this paper that incorporates multi-level information of images to produce more precise segmentation results.
arXiv Detail & Related papers (2022-02-27T09:56:33Z) - Image Segmentation with Homotopy Warping [10.093435601073484]
topological correctness is crucial for the segmentation of images with fine-scale structures.
By leveraging the theory of digital topology, we identify locations in an image that are critical for topology.
We propose a new homotopy warping loss to train deep image segmentation networks for better topological accuracy.
arXiv Detail & Related papers (2021-12-15T00:33:15Z) - TA-Net: Topology-Aware Network for Gland Segmentation [71.52681611057271]
We propose a novel topology-aware network (TA-Net) to accurately separate densely clustered and severely deformed glands.
TA-Net has a multitask learning architecture and enhances the generalization of gland segmentation.
It achieves state-of-the-art performance on the two datasets.
arXiv Detail & Related papers (2021-10-27T17:10:58Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
We propose a pixel-wise sparse graph reasoning (PSGR) module to enhance the modeling of long-range dependencies for COVID-19 infected region segmentation in CT images.
The PSGR module avoids imprecise pixel-to-node projections and preserves the inherent information of each pixel for global reasoning.
The solution has been evaluated against four widely-used segmentation models on three public datasets.
arXiv Detail & Related papers (2021-08-09T04:58:23Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
Location information is proven to benefit the deep learning models on capturing the manifold structure of target objects.
Most existing methods encode the location information in an implicit way, for the network to learn.
We propose a novel loss function, namely residual moment (RM) loss, to explicitly embed the location information of segmentation targets.
arXiv Detail & Related papers (2021-06-27T09:31:49Z) - PointFlow: Flowing Semantics Through Points for Aerial Image
Segmentation [96.76882806139251]
We propose a point-wise affinity propagation module based on the Feature Pyramid Network (FPN) framework, named PointFlow.
Rather than dense affinity learning, a sparse affinity map is generated upon selected points between the adjacent features.
Experimental results on three different aerial segmentation datasets suggest that the proposed method is more effective and efficient than state-of-the-art general semantic segmentation methods.
arXiv Detail & Related papers (2021-03-11T09:42:32Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.