From Seeing to Doing: Bridging Reasoning and Decision for Robotic Manipulation
- URL: http://arxiv.org/abs/2505.08548v2
- Date: Tue, 27 May 2025 03:37:39 GMT
- Title: From Seeing to Doing: Bridging Reasoning and Decision for Robotic Manipulation
- Authors: Yifu Yuan, Haiqin Cui, Yibin Chen, Zibin Dong, Fei Ni, Longxin Kou, Jinyi Liu, Pengyi Li, Yan Zheng, Jianye Hao,
- Abstract summary: We propose FSD (From Seeing to Doing), a novel vision-language model that generates intermediate representations through spatial relationship reasoning.<n>Our approach combines a hierarchical data pipeline for training with a self-consistency mechanism that aligns spatial coordinates with visual signals.<n>We show that FSD achieves 40.6% success rate in SimplerEnv and 72% success rate across 8 real-world tasks, outperforming the strongest baseline by 30%.
- Score: 35.79160868966466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving generalization in robotic manipulation remains a critical challenge, particularly for unseen scenarios and novel tasks. Current Vision-Language-Action (VLA) models, while building on top of general Vision-Language Models (VLMs), still fall short of achieving robust zero-shot performance due to the scarcity and heterogeneity prevalent in embodied datasets. To address these limitations, we propose FSD (From Seeing to Doing), a novel vision-language model that generates intermediate representations through spatial relationship reasoning, providing fine-grained guidance for robotic manipulation. Our approach combines a hierarchical data pipeline for training with a self-consistency mechanism that aligns spatial coordinates with visual signals. Through extensive experiments, we comprehensively validated FSD's capabilities in both "seeing" and "doing," achieving outstanding performance across 8 benchmarks for general spatial reasoning and embodied reference abilities, as well as on our proposed more challenging benchmark VABench. We also verified zero-shot capabilities in robot manipulation, demonstrating significant performance improvements over baseline methods in both SimplerEnv and real robot settings. Experimental results show that FSD achieves 40.6% success rate in SimplerEnv and 72% success rate across 8 real-world tasks, outperforming the strongest baseline by 30%.
Related papers
- 4D-VLA: Spatiotemporal Vision-Language-Action Pretraining with Cross-Scene Calibration [31.111439909825627]
Existing methods typically model the dataset's action distribution using simple observations as inputs.<n>We propose 4D-VLA, a novel approach that effectively integrates 4D information into the input to these sources of chaos.<n>Our model consistently outperforms existing methods, demonstrating stronger spatial understanding and adaptability.
arXiv Detail & Related papers (2025-06-27T14:09:29Z) - ROSA: Harnessing Robot States for Vision-Language and Action Alignment [24.426285156386715]
Vision-Language Models (VLMs) have made significant advance in end-to-end robotic control.<n>We propose a novel training paradigm, ROSA, which leverages robot state estimation to improve alignment between vision-language and action spaces.
arXiv Detail & Related papers (2025-06-16T16:34:20Z) - A Data-Centric Revisit of Pre-Trained Vision Models for Robot Learning [67.72413262980272]
Pre-trained vision models (PVMs) are fundamental to modern robotics, yet their optimal configuration remains unclear.<n>We develop SlotMIM, a method that induces object-centric representations by introducing a semantic bottleneck.<n>Our approach achieves significant improvements over prior work in image recognition, scene understanding, and robot learning evaluations.
arXiv Detail & Related papers (2025-03-10T06:18:31Z) - HAMSTER: Hierarchical Action Models For Open-World Robot Manipulation [54.03004125910057]
We show that hierarchical vision-language-action models can be more effective in utilizing off-domain data than standard monolithic VLA models.<n>We show that, with the hierarchical design, the high-level VLM can transfer across significant domain gaps between the off-domain finetuning data and real-robot testing scenarios.
arXiv Detail & Related papers (2025-02-08T07:50:22Z) - TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies [95.30717188630432]
We introduce visual trace prompting to facilitate VLA models' spatial-temporal awareness for action prediction.<n>We develop a new TraceVLA model by finetuning OpenVLA on our own collected dataset of 150K robot manipulation trajectories.<n>We present a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-Embodiment and finetuned on our dataset.
arXiv Detail & Related papers (2024-12-13T18:40:51Z) - Robots Pre-train Robots: Manipulation-Centric Robotic Representation from Large-Scale Robot Datasets [24.77850617214567]
We propose a foundation representation learning framework capturing both visual features and the dynamics information such as actions and proprioceptions of manipulation tasks.
Specifically, we pre-train a visual encoder on the DROID robotic dataset and leverage motion-relevant data such as robot proprioceptive states and actions.
We introduce a novel contrastive loss that aligns visual observations with the robot's proprioceptive state-action dynamics, combined with a behavior cloning (BC)-like actor loss to predict actions during pre-training, along with a time contrastive loss.
arXiv Detail & Related papers (2024-10-29T17:58:13Z) - Leveraging Locality to Boost Sample Efficiency in Robotic Manipulation [14.990771038350106]
SGRv2 is an imitation learning framework that enhances sample efficiency through improved visual and action representations.
SGRv2 excels in RLBench tasks with control using merely 5 demonstrations and surpasses the RVT baseline in 23 of 26 tasks.
arXiv Detail & Related papers (2024-06-15T12:27:35Z) - Scaling Data Generation in Vision-and-Language Navigation [116.95534559103788]
We propose an effective paradigm for generating large-scale data for learning.
We apply 1200+ photo-realistic environments from HM3D and Gibson datasets and synthesizes 4.9 million instruction trajectory pairs.
Thanks to our large-scale dataset, the performance of an existing agent can be pushed up (+11% absolute with regard to previous SoTA) to a significantly new best of 80% single-run success rate on the R2R test split by simple imitation learning.
arXiv Detail & Related papers (2023-07-28T16:03:28Z) - ProcTHOR: Large-Scale Embodied AI Using Procedural Generation [55.485985317538194]
ProcTHOR is a framework for procedural generation of Embodied AI environments.
We demonstrate state-of-the-art results across 6 embodied AI benchmarks for navigation, rearrangement, and arm manipulation.
arXiv Detail & Related papers (2022-06-14T17:09:35Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
We propose a novel unsupervised domain adaptation framework which can simultaneously transfer multi-modality knowledge, i.e., both kinematic and visual data, from simulator to real robot.
It remedies the domain gap with enhanced transferable features by using temporal cues in videos, and inherent correlations in multi-modal towards recognizing gesture.
Results show that our approach recovers the performance with great improvement gains, up to 12.91% in ACC and 20.16% in F1score without using any annotations in real robot.
arXiv Detail & Related papers (2021-03-06T09:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.