Automated Model-Free Sorting of Single-Molecule Fluorescence Events Using a Deep Learning Based Hidden-State Model
- URL: http://arxiv.org/abs/2505.08608v1
- Date: Tue, 13 May 2025 14:26:33 GMT
- Title: Automated Model-Free Sorting of Single-Molecule Fluorescence Events Using a Deep Learning Based Hidden-State Model
- Authors: Wenqi Zeng, Shuqi Zhou, Yuan Yao, Chunlai Chen,
- Abstract summary: DASH is a fully streamlined architecture for trace classification, state assignment, and automatic sorting.<n>This paper proposes a novel strategy for the automatic and detailed sorting of single-molecule fluorescence events.
- Score: 4.2122082492789055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-molecule fluorescence assays enable high-resolution analysis of biomolecular dynamics, but traditional analysis pipelines are labor-intensive and rely on users' experience, limiting scalability and reproducibility. Recent deep learning models have automated aspects of data processing, yet many still require manual thresholds, complex architectures, or extensive labeled data. Therefore, we present DASH, a fully streamlined architecture for trace classification, state assignment, and automatic sorting that requires no user input. DASH demonstrates robust performance across users and experimental conditions both in equilibrium and non-equilibrium systems such as Cas12a-mediated DNA cleavage. This paper proposes a novel strategy for the automatic and detailed sorting of single-molecule fluorescence events. The dynamic cleavage process of Cas12a is used as an example to provide a comprehensive analysis. This approach is crucial for studying biokinetic structural changes at the single-molecule level.
Related papers
- ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data [53.78763789036172]
We present ChemActor, a fully fine-tuned large language model (LLM) as a chemical executor to convert between unstructured experimental procedures and structured action sequences.<n>This framework integrates a data selection module that selects data based on distribution divergence, with a general-purpose LLM, to generate machine-executable actions from a single molecule input.<n>Experiments on reaction-to-description (R2D) and description-to-action (D2A) tasks demonstrate that ChemActor achieves state-of-the-art performance, outperforming the baseline model by 10%.
arXiv Detail & Related papers (2025-06-30T05:11:19Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Mixup-Augmented Meta-Learning for Sample-Efficient Fine-Tuning of
Protein Simulators [29.22292758901411]
We adapt the soft prompt-based learning method to molecular dynamics tasks.
Our framework excels in accuracy for in-domain data and demonstrates strong generalization capabilities for unseen and out-of-distribution samples.
arXiv Detail & Related papers (2023-08-29T08:29:08Z) - Learning Multiscale Consistency for Self-supervised Electron Microscopy
Instance Segmentation [48.267001230607306]
We propose a pretraining framework that enhances multiscale consistency in EM volumes.
Our approach leverages a Siamese network architecture, integrating strong and weak data augmentations.
It effectively captures voxel and feature consistency, showing promise for learning transferable representations for EM analysis.
arXiv Detail & Related papers (2023-08-19T05:49:13Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Calibration and generalizability of probabilistic models on low-data
chemical datasets with DIONYSUS [0.0]
We perform an extensive study of the calibration and generalizability of probabilistic machine learning models on small chemical datasets.
We analyse the quality of their predictions and uncertainties in a variety of tasks (binary, regression) and datasets.
We offer practical insights into model and feature choice for modelling small chemical datasets, a common scenario in new chemical experiments.
arXiv Detail & Related papers (2022-12-03T08:19:06Z) - A Deep Learning Approach to Analyzing Continuous-Time Systems [20.89961728689037]
We show that deep learning can be used to analyze complex processes.
Our approach relaxes standard assumptions that are implausible for many natural systems.
We demonstrate substantial improvements on behavioral and neuroimaging data.
arXiv Detail & Related papers (2022-09-25T03:02:31Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
The paper presents an approach to process mining providing semi-automatic support to model optimization.
A model simplification approach is proposed, which essentially abstracts the raw model at the desired granularity.
We aim to demonstrate the capabilities of the technological solution using three datasets from different applications in the healthcare domain.
arXiv Detail & Related papers (2022-06-10T16:20:59Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.