Uncertainty-Aware Surrogate-based Amortized Bayesian Inference for Computationally Expensive Models
- URL: http://arxiv.org/abs/2505.08683v1
- Date: Tue, 13 May 2025 15:44:10 GMT
- Title: Uncertainty-Aware Surrogate-based Amortized Bayesian Inference for Computationally Expensive Models
- Authors: Stefania Scheurer, Philipp Reiser, Tim Brünnette, Wolfgang Nowak, Anneli Guthke, Paul-Christian Bürkner,
- Abstract summary: We propose Uncertainty-Aware Surrogate-based Amortized Bayesian Inference (UA-SABI)<n>Our experiments show that this approach enables reliable, fast, and repeated Bayesian inference for computationally expensive models, even under tight time constraints.
- Score: 1.5511264120614792
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Bayesian inference typically relies on a large number of model evaluations to estimate posterior distributions. Established methods like Markov Chain Monte Carlo (MCMC) and Amortized Bayesian Inference (ABI) can become computationally challenging. While ABI enables fast inference after training, generating sufficient training data still requires thousands of model simulations, which is infeasible for expensive models. Surrogate models offer a solution by providing approximate simulations at a lower computational cost, allowing the generation of large data sets for training. However, the introduced approximation errors and uncertainties can lead to overconfident posterior estimates. To address this, we propose Uncertainty-Aware Surrogate-based Amortized Bayesian Inference (UA-SABI) - a framework that combines surrogate modeling and ABI while explicitly quantifying and propagating surrogate uncertainties through the inference pipeline. Our experiments show that this approach enables reliable, fast, and repeated Bayesian inference for computationally expensive models, even under tight time constraints.
Related papers
- Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.<n>We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.<n>Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference [1.1383507019490222]
Surrogate models are conceptual approximations for more complex simulation models.<n> quantifying and propagating the uncertainty of surrogates is usually limited to special analytic cases.<n>We present three methods for Bayesian inference with surrogate models given measurement data.
arXiv Detail & Related papers (2023-12-08T16:31:52Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Adversarial robustness of amortized Bayesian inference [3.308743964406687]
Amortized Bayesian inference is to initially invest computational cost in training an inference network on simulated data.
We show that almost unrecognizable, targeted perturbations of the observations can lead to drastic changes in the predicted posterior and highly unrealistic posterior predictive samples.
We propose a computationally efficient regularization scheme based on penalizing the Fisher information of the conditional density estimator.
arXiv Detail & Related papers (2023-05-24T10:18:45Z) - BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
Neural Networks [50.15201777970128]
We propose BayesCap that learns a Bayesian identity mapping for the frozen model, allowing uncertainty estimation.
BayesCap is a memory-efficient method that can be trained on a small fraction of the original dataset.
We show the efficacy of our method on a wide variety of tasks with a diverse set of architectures.
arXiv Detail & Related papers (2022-07-14T12:50:09Z) - Black-box Bayesian inference for economic agent-based models [0.0]
We investigate the efficacy of two classes of black-box approximate Bayesian inference methods.
We demonstrate that neural network based black-box methods provide state of the art parameter inference for economic simulation models.
arXiv Detail & Related papers (2022-02-01T18:16:12Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - $\beta$-Cores: Robust Large-Scale Bayesian Data Summarization in the
Presence of Outliers [14.918826474979587]
The quality of classic Bayesian inference depends critically on whether observations conform with the assumed data generating model.
We propose a variational inference method that, in a principled way, can simultaneously scale to large datasets.
We illustrate the applicability of our approach in diverse simulated and real datasets, and various statistical models.
arXiv Detail & Related papers (2020-08-31T13:47:12Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.