Securing RAG: A Risk Assessment and Mitigation Framework
- URL: http://arxiv.org/abs/2505.08728v2
- Date: Wed, 21 May 2025 09:45:04 GMT
- Title: Securing RAG: A Risk Assessment and Mitigation Framework
- Authors: Lukas Ammann, Sara Ott, Christoph R. Landolt, Marco P. Lehmann,
- Abstract summary: Retrieval Augmented Generation (RAG) has emerged as the de facto industry standard for user-facing NLP applications.<n>This paper reviews the vulnerabilities of RAG pipelines, and outlines the attack surface from data pre-processing to integration with Large Language Models (LLMs)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval Augmented Generation (RAG) has emerged as the de facto industry standard for user-facing NLP applications, offering the ability to integrate data without re-training or fine-tuning Large Language Models (LLMs). This capability enhances the quality and accuracy of responses but also introduces novel security and privacy challenges, particularly when sensitive data is integrated. With the rapid adoption of RAG, securing data and services has become a critical priority. This paper first reviews the vulnerabilities of RAG pipelines, and outlines the attack surface from data pre-processing and data storage management to integration with LLMs. The identified risks are then paired with corresponding mitigations in a structured overview. In a second step, the paper develops a framework that combines RAG-specific security considerations, with existing general security guidelines, industry standards, and best practices. The proposed framework aims to guide the implementation of robust, compliant, secure, and trustworthy RAG systems.
Related papers
- Provably Secure Retrieval-Augmented Generation [7.412110686946628]
This paper proposes the first provably secure framework for Retrieval-Augmented Generation (RAG) systems.<n>Our framework employs a pre-storage full-encryption scheme to ensure dual protection of both retrieved content and vector embeddings.
arXiv Detail & Related papers (2025-08-01T21:37:16Z) - Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG)<n>FedE4RAG facilitates collaborative training of client-side RAG retrieval models.<n>We apply homomorphic encryption within federated learning to safeguard model parameters.
arXiv Detail & Related papers (2025-04-27T04:26:02Z) - MES-RAG: Bringing Multi-modal, Entity-Storage, and Secure Enhancements to RAG [65.0423152595537]
We propose MES-RAG, which enhances entity-specific query handling and provides accurate, secure, and consistent responses.<n>MES-RAG introduces proactive security measures that ensure system integrity by applying protections prior to data access.<n> Experimental results demonstrate that MES-RAG significantly improves both accuracy and recall, highlighting its effectiveness in advancing the security and utility of question-answering.
arXiv Detail & Related papers (2025-03-17T08:09:42Z) - Privacy-Aware RAG: Secure and Isolated Knowledge Retrieval [7.412110686946628]
This paper proposes an advanced encryption methodology designed to protect RAG systems from unauthorized access and data leakage.<n>Our approach encrypts both textual content and its corresponding embeddings prior to storage, ensuring that all data remains securely encrypted.<n>Our findings suggest that integrating advanced encryption techniques into the design and deployment of RAG systems can effectively enhance privacy safeguards.
arXiv Detail & Related papers (2025-03-17T07:45:05Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC)<n>RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks.<n>Despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including privacy concerns, adversarial attacks, and accountability issues.
arXiv Detail & Related papers (2025-02-08T06:50:47Z) - SafeRAG: Benchmarking Security in Retrieval-Augmented Generation of Large Language Model [17.046058202577985]
We introduce a benchmark named SafeRAG designed to evaluate the RAG security.<n>First, we classify attack tasks into silver noise, inter-context conflict, soft ad, and white Denial-of-Service.<n>We then utilize the SafeRAG dataset to simulate various attack scenarios that RAG may encounter.
arXiv Detail & Related papers (2025-01-28T17:01:31Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs)
We propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy.
arXiv Detail & Related papers (2024-09-16T09:06:44Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.<n>With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance.<n> Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG) models enhance Large Language Models (LLMs)
In this paper, we demonstrate a security threat where adversaries can exploit the openness of these knowledge bases.
arXiv Detail & Related papers (2024-06-26T05:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.