論文の概要: Machine Learning-Based Detection of DDoS Attacks in VANETs for Emergency Vehicle Communication
- arxiv url: http://arxiv.org/abs/2505.08810v1
- Date: Mon, 12 May 2025 07:00:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.230349
- Title: Machine Learning-Based Detection of DDoS Attacks in VANETs for Emergency Vehicle Communication
- Title(参考訳): 緊急車両通信のための VANET における DDoS 攻撃の機械学習による検出
- Authors: Bappa Muktar, Vincent Fono, Adama Nouboukpo,
- Abstract要約: Vehicular Ad Hoc Networks (VANETs) はIntelligent Transportation Systems (ITS) において重要な役割を担っている。
本研究では、高速道路ベースのVANET環境におけるDDoS攻撃を検出する堅牢でスケーラブルなフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vehicular Ad Hoc Networks (VANETs) play a key role in Intelligent Transportation Systems (ITS), particularly in enabling real-time communication for emergency vehicles. However, Distributed Denial of Service (DDoS) attacks, which interfere with safety-critical communication channels, can severely impair their reliability. This study introduces a robust and scalable framework to detect DDoS attacks in highway-based VANET environments. A synthetic dataset was constructed using Network Simulator 3 (NS-3) in conjunction with the Simulation of Urban Mobility (SUMO) and further enriched with real-world mobility traces from Germany's A81 highway, extracted via OpenStreetMap (OSM). Three traffic categories were simulated: DDoS, VoIP, and TCP-based video streaming (VideoTCP). The data preprocessing pipeline included normalization, signal-to-noise ratio (SNR) feature engineering, missing value imputation, and class balancing using the Synthetic Minority Over-sampling Technique (SMOTE). Feature importance was assessed using SHapley Additive exPlanations (SHAP). Eleven classifiers were benchmarked, among them XGBoost (XGB), CatBoost (CB), AdaBoost (AB), GradientBoosting (GB), and an Artificial Neural Network (ANN). XGB and CB achieved the best performance, each attaining an F1-score of 96%. These results highlight the robustness of the proposed framework and its potential for real-time deployment in VANETs to secure critical emergency communications.
- Abstract(参考訳): Vehicular Ad Hoc Networks (VANETs) はIntelligent Transportation Systems (ITS) において特に緊急車両のリアルタイム通信において重要な役割を担っている。
しかし、安全クリティカルな通信チャネルを妨害するDistributed Denial of Service(DDoS)攻撃は、その信頼性を著しく損なう可能性がある。
本研究では、高速道路ベースのVANET環境におけるDDoS攻撃を検出する堅牢でスケーラブルなフレームワークを提案する。
シミュレーション・オブ・アーバンモビリティ(SUMO)とともにネットワークシミュレーター3(NS-3)を用いて合成データセットを構築し、さらにOpenStreetMap(OSM)を介して抽出されたドイツのA81ハイウェイから現実のモビリティトレースに富んだ。
DDoS、VoIP、TCPベースのビデオストリーミング( VideoTCP)の3つのトラフィックカテゴリがシミュレーションされた。
データ前処理パイプラインには、正規化、SNR(Signal-to-Noise ratio)機能エンジニアリング、値計算の欠如、Synthetic Minority Over-Sampling Technique (SMOTE)を用いたクラスバランシングが含まれていた。
SHAP(SHapley Additive exPlanations)を用いて特徴評価を行った。
XGBoost (XGB), CatBoost (CB), AdaBoost (AB), GradientBoosting (GB), Artificial Neural Network (ANN)を含む11の分類器がベンチマークされた。
XGBとCBは最高のパフォーマンスを達成し、それぞれ96%のF1スコアを獲得した。
これらの結果は,提案するフレームワークの堅牢性と,重要な緊急通信を確保するためのVANETのリアルタイム展開の可能性を強調している。
関連論文リスト
- Zero-Day Botnet Attack Detection in IoV: A Modular Approach Using Isolation Forests and Particle Swarm Optimization [5.283060049860749]
ボットのマルウェアとサイバー攻撃は、コネクテッドと自律走行車に重大なリスクをもたらす。
CAV間のネットワークトラフィックをモニタするエッジベース侵入検知システム(IDS)を提案する。
論文 参考訳(メタデータ) (2025-04-26T05:57:03Z) - Real-Time Pedestrian Detection on IoT Edge Devices: A Lightweight Deep Learning Approach [1.4732811715354455]
本研究では,AIoT(Artificial Intelligence of Things)エッジデバイス上での軽量ディープラーニングモデルの実装について検討する。
You Only Look Once (YOLO)ベースのDLモデルは、リアルタイムな歩行者検出のためにデプロイされる。
シミュレーションの結果、最適化されたYOLOモデルは、高速な推論速度147ミリ秒、フレームレート2.3フレーム/秒、精度78%でリアルタイムな歩行者検出を実現できることが示された。
論文 参考訳(メタデータ) (2024-09-24T04:48:41Z) - SISSA: Real-time Monitoring of Hardware Functional Safety and
Cybersecurity with In-vehicle SOME/IP Ethernet Traffic [49.549771439609046]
本稿では,車内機能安全とサイバーセキュリティをモデル化・解析するためのSOME/IP通信トラフィックベースアプローチであるSISSAを提案する。
具体的には、SISSAはWeibullディストリビューションでハードウェア障害をモデル化し、SOME/IP通信に対する5つの潜在的な攻撃に対処する。
広範囲な実験結果から,SISSAの有効性と有効性が確認された。
論文 参考訳(メタデータ) (2024-02-21T03:31:40Z) - Cyber-Twin: Digital Twin-boosted Autonomous Attack Detection for Vehicular Ad-Hoc Networks [8.07947129445779]
Vehicular Ad-hoc NETworks(VANETs)の急速な進化は、インテリジェントトランスポートシステム(ITS)の転換期へと導いてきた。
VANETは、妨害やDDoS(Distributed Denial of Service)攻撃など、サイバー攻撃の影響を受けやすくなっている。
既存の方法は、動的攻撃を検出し、VANETサイバーセキュリティを強化するためにデジタルツイン技術と人工知能(AI)モデルを統合するのに困難に直面している。
本研究では、VANETにおけるRSUのセキュリティを高めるために、デジタルツイン技術とAIを組み合わせた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-25T08:05:41Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Multi-Armed Bandit Based Client Scheduling for Federated Learning [91.91224642616882]
統合学習(FL)は、通信オーバーヘッドの低減やデータのプライバシの保護など、ユビキタスな特性を特徴とする。
FLの各通信ラウンドでは、クライアントは自身のデータに基づいてローカルモデルを更新し、無線チャネル経由でローカル更新をアップロードする。
本研究は、無線チャネルの状態情報やクライアントの統計的特性を知ることなく、FLにおけるオンラインクライアントスケジューリング(CS)のためのマルチアームバンディットベースのフレームワークを提供する。
論文 参考訳(メタデータ) (2020-07-05T12:32:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。