TUGS: Physics-based Compact Representation of Underwater Scenes by Tensorized Gaussian
- URL: http://arxiv.org/abs/2505.08811v1
- Date: Mon, 12 May 2025 07:09:35 GMT
- Title: TUGS: Physics-based Compact Representation of Underwater Scenes by Tensorized Gaussian
- Authors: Shijie Lian, Ziyi Zhang, Laurence Tianruo Yang and, Mengyu Ren, Debin Liu, Hua Li,
- Abstract summary: Underwater Gaussian Splatting (TUGS) can effectively solve the modeling challenges of the complex interactions between object and water media.<n>Compared to other NeRF-based and GS-based methods designed for underwater, TUGS is able to render high-quality underwater images with faster rendering speeds and less memory usage.
- Score: 6.819210285113731
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Underwater 3D scene reconstruction is crucial for undewater robotic perception and navigation. However, the task is significantly challenged by the complex interplay between light propagation, water medium, and object surfaces, with existing methods unable to model their interactions accurately. Additionally, expensive training and rendering costs limit their practical application in underwater robotic systems. Therefore, we propose Tensorized Underwater Gaussian Splatting (TUGS), which can effectively solve the modeling challenges of the complex interactions between object geometries and water media while achieving significant parameter reduction. TUGS employs lightweight tensorized higher-order Gaussians with a physics-based underwater Adaptive Medium Estimation (AME) module, enabling accurate simulation of both light attenuation and backscatter effects in underwater environments. Compared to other NeRF-based and GS-based methods designed for underwater, TUGS is able to render high-quality underwater images with faster rendering speeds and less memory usage. Extensive experiments on real-world underwater datasets have demonstrated that TUGS can efficiently achieve superior reconstruction quality using a limited number of parameters, making it particularly suitable for memory-constrained underwater UAV applications
Related papers
- 3D-UIR: 3D Gaussian for Underwater 3D Scene Reconstruction via Physics Based Appearance-Medium Decoupling [30.985414238960466]
3D Gaussian Splatting (3DGS) offers real-time rendering capabilities, but struggles with underwater inhomogeneous environments.<n>We propose a physics-based framework that disentangles object appearance from water medium effects.<n>Our approach achieves both high-quality novel view synthesis and physically accurate scene restoration.
arXiv Detail & Related papers (2025-05-27T14:19:30Z) - RUSplatting: Robust 3D Gaussian Splatting for Sparse-View Underwater Scene Reconstruction [15.366193984872671]
This paper presents an enhanced Gaussian Splatting-based framework that improves both the visual quality and accuracy of deep underwater rendering.<n>We propose decoupled learning for RGB channels, guided by the physics of underwater attenuation, to enable more accurate colour restoration.<n>We also introduce a new loss function aimed at reducing noise while preserving edges, which is essential for deep-sea content.
arXiv Detail & Related papers (2025-05-21T16:42:15Z) - AquaGS: Fast Underwater Scene Reconstruction with SfM-Free Gaussian Splatting [4.0317256978754505]
We introduce AquaGS, an SfM-free underwater scene reconstruction model based on the SeaThru algorithm.<n>Our model can complete high-precision reconstruction in 30 seconds with only 3 image inputs.
arXiv Detail & Related papers (2025-05-03T12:05:57Z) - AI-Enhanced Automatic Design of Efficient Underwater Gliders [60.45821679800442]
Building an automated design framework is challenging due to the complexities of representing glider shapes and the high computational costs associated with modeling complex solid-fluid interactions.<n>We introduce an AI-enhanced automated computational framework designed to overcome these limitations by enabling the creation of underwater robots with non-trivial hull shapes.<n>Our approach involves an algorithm that co-optimizes both shape and control signals, utilizing a reduced-order geometry representation and a differentiable neural-network-based fluid surrogate model.
arXiv Detail & Related papers (2025-04-30T23:55:44Z) - Learning Underwater Active Perception in Simulation [51.205673783866146]
Turbidity can jeopardise the whole mission as it may prevent correct visual documentation of the inspected structures.<n>Previous works have introduced methods to adapt to turbidity and backscattering.<n>We propose a simple yet efficient approach to enable high-quality image acquisition of assets in a broad range of water conditions.
arXiv Detail & Related papers (2025-04-23T06:48:38Z) - Aquatic-GS: A Hybrid 3D Representation for Underwater Scenes [6.549998173302729]
We propose Aquatic-GS, a hybrid 3D representation approach for underwater scenes that effectively represents both the objects and the water medium.<n>Specifically, we construct a Neural Water Field (NWF) to implicitly model the water parameters, while extending the latest 3D Gaussian Splatting (3DGS) to model the objects explicitly.<n>Both components are integrated through a physics-based underwater image formation model to represent complex underwater scenes.
arXiv Detail & Related papers (2024-10-31T22:24:56Z) - UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
We propose a framework for reconstructing target objects from multi-view underwater images based on neural SDF.
We introduce hybrid geometric priors to optimize the reconstruction process, markedly enhancing the quality and efficiency of neural SDF reconstruction.
arXiv Detail & Related papers (2024-10-10T16:33:56Z) - FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
We introduce FAFA, a Frequency-Aware Flow-Aided self-supervised framework for 6D pose estimation of unmanned underwater vehicles (UUVs)
Our framework relies solely on the 3D model and RGB images, alleviating the need for any real pose annotations or other-modality data like depths.
We evaluate the effectiveness of FAFA on common underwater object pose benchmarks and showcase significant performance improvements compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-09-25T03:54:01Z) - An Efficient Detection and Control System for Underwater Docking using
Machine Learning and Realistic Simulation: A Comprehensive Approach [5.039813366558306]
This work compares different deep-learning architectures to perform underwater docking detection and classification.
A Generative Adversarial Network (GAN) is used to do image-to-image translation, converting the Gazebo simulation image into an underwater-looking image.
Results show an improvement of 20% in the high turbidity scenarios regardless of the underwater currents.
arXiv Detail & Related papers (2023-11-02T18:10:20Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
We present DeepAqua, a self-supervised deep learning model that eliminates the need for manual annotations during the training phase.
We exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces.
Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 7%, Intersection Over Union by 27%, and F1 score by 14%.
arXiv Detail & Related papers (2023-05-02T18:06:21Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.